The topological quantum phase transitions in Lieb lattice driven by the Rashba SOC and exchange field

被引:0
作者
Rui Wang
Qian Qiao
Bin Wang
Xiu-Huan Ding
Yi-Fu Zhang
机构
[1] Zhejiang Ocean University,Department of Electronic Information Science and Engineering
[2] College of Physics Science and Technology,undefined
[3] Shenzhen University,undefined
[4] College of Mathematics,undefined
[5] Physics and Information Science,undefined
[6] Zhejiang Ocean University,undefined
[7] Department of Physics and Astronomy,undefined
[8] Louisiana State University,undefined
[9] Center for Computation and Technology,undefined
[10] Louisiana State University,undefined
来源
The European Physical Journal B | 2016年 / 89卷
关键词
Mesoscopic and Nanoscale Systems;
D O I
暂无
中图分类号
学科分类号
摘要
The quantum spin Hall (QSH) effect and the quantum anomalous Hall (QAH) effect in Lieb lattice are investigated in the presence of both Rashba spin-orbit coupling (SOC) and uniform exchange field. The Lieb lattice has a simple cubic symmetry, which is characterized by the single Dirac-cone per Brillouin zone and the middle flat band in the band structure. The intrinsic SOC is essentially needed to open the full energy gap in the bulk. The QSH effect could survive even in the presence of the exchange field. In terms of the first Chern number and the spin Chern number, we study the topological nature and the topological phase transition from the time-reversal symmetry broken QSH effect to the QAH effect. For Lieb lattice ribbons, the energy spectrum and the wave-function distributions are obtained numerically, where the helical edge states and the chiral edge states reveal the non-trivial topological QSH and QAH properties, respectively.
引用
收藏
相关论文
共 136 条
[1]  
Klitzing K.V.(1980)undefined Phys. Rev. Lett. 45 494-undefined
[2]  
Dorda G.(1982)undefined Phys. Rev. Lett. 48 1559-undefined
[3]  
Pepper M.(2005)undefined Phys. Rev. Lett. 95 226801-undefined
[4]  
Tsui D.C.(2014)undefined Phys. Rev. Lett. 112 216803-undefined
[5]  
Stormer H.L.(2006)undefined Science 314 1757-undefined
[6]  
Gossard A.C.(2010)undefined Rev. Mod. Phys. 82 3045-undefined
[7]  
Kane C.L.(2010)undefined Phys. Today 63 33-undefined
[8]  
Mele E.J.(1982)undefined Phys. Rev. Lett. 49 405-undefined
[9]  
Zhang Haijun(2011)undefined Phys. Rev. Lett. 107 066602-undefined
[10]  
Xu Yong(2006)undefined Phys. Rev. Lett. 97 036808-undefined