Trends in anomalous small-angle X-ray scattering in grazing incidence for supported nanoalloyed and core-shell metallic nanoparticles

被引:0
作者
P. Andreazza
H. Khelfane
O. Lyon
C. Andreazza-Vignolle
A. Y. Ramos
M. Samah
机构
[1] UMR 6619 Université d’Orléans - CNRS,Centre de Recherche sur la Matière Divisée
[2] Université A/MIRA,Laboratoire de Physique Théorique
[3] Université de Boumerdes,Faculté des Sciences
[4] Synchrotron Soleil,L’Orme de Merisiers
[5] CNRS et Université Joseph Fourier,Institut Néel
来源
The European Physical Journal Special Topics | 2012年 / 208卷
关键词
European Physical Journal Special Topic; CoPt; Grazing Incidence; Interference Function; Partial Structure Factor;
D O I
暂无
中图分类号
学科分类号
摘要
As atomic structure and morphology of particles are directly correlated to their functional properties, experimental methods probing local and average features of particles at the nanoscale elicit a growing interest. Anomalous small-angle X-ray scattering (ASAXS) is a very attractive technique to investigate the size, shape and spatial distribution of nanoobjects embedded in a homogeneous matrix or in porous media. The anomalous variation of the scattering factor close to an absorption edge enables element specific investigations. In the case of supported nano-objects, the use of grazing incidence is necessary to limit the probed depth. The combination of grazing incidence with the anomalous technique provides a powerful new method, anomalous grazing incidence small-angle X-ray scattering (AGISAXS), to disentangle complex chemical patterns in supported multi-component nano-structures. Nevertheless, a proper data analysis requires accurate quantitative measurements associated to an adapted theoretical framework. This paper presents anomalous methods applied to nanoalloys phase separation in the 1–10 nm size range, and focuses on the application of AGISAXS in bimetallic systems: nanocomposite films and core-shell supported nanoparticles.
引用
收藏
页码:231 / 244
页数:13
相关论文
共 172 条
  • [1] Ferrando R.(2008)undefined Chem. Reviews 108 845-undefined
  • [2] Jellinek J.(2010)undefined Phys. Rev. B 82 155453-undefined
  • [3] Johnston R.L.(2008)undefined J. Mat. Chem. 18 2442-undefined
  • [4] Andreazza P.(2007)undefined Zeit. Krystall. 222 605-undefined
  • [5] Mottet C.(2007)undefined J. Appl. Cryst. 40 s1-undefined
  • [6] Andreazza-Vignolle C.(1999)undefined Jpn. J. Appl. Phys. 38 36-undefined
  • [7] Penuelas J.(2003)undefined J. Appl. Cryst. 36 425-undefined
  • [8] Tolentino H.C.N.(2007)undefined J. Appl. Cryst. 40 s418-undefined
  • [9] De M.(1985)undefined J. Appl. Cryst. 18 480-undefined
  • [10] Bouet N.(1995)undefined J. Appl. Phys. 78 6916-undefined