The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains

被引:0
|
作者
Hyeseon Kim
Atsushi Yamamori
机构
[1] Korea Institute for Advanced Study,Center for Mathematical Challenges
[2] Kogakuin University,Academic Support Center
来源
Czechoslovak Mathematical Journal | 2018年 / 68卷
关键词
holomorphic automorphism group; Bergman kernel; Reinhardt domain; 32M05; 32A25; 32A07;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a certain class of unbounded nonhyperbolic Reinhardt domains which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan’s linearity theorem for our unbounded nonhyperbolic domains, we give a complete description of the automorphism groups of twisted Fock-Bargmann-Hartogs domains.
引用
收藏
页码:611 / 631
页数:20
相关论文
共 17 条
  • [1] The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains
    Kim, Hyeseon
    Yamamori, Atsushi
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2018, 68 (03) : 611 - 631
  • [2] Rigidity of the Holomorphic Automorphism of the Generalized Fock-Bargmann-Hartogs Domains
    Ting Guo
    Zhiming Feng
    Enchao Bi
    Czechoslovak Mathematical Journal, 2021, 71 : 373 - 386
  • [3] Rigidity of the Holomorphic Automorphism of the Generalized Fock-Bargmann-Hartogs Domains
    Guo, Ting
    Feng, Zhiming
    Bi, Enchao
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (02) : 373 - 386
  • [4] Remarks on Rawnsley's ε-function on the Fock-Bargmann-Hartogs domains
    Yang, Huan
    Bi, Enchao
    ARCHIV DER MATHEMATIK, 2019, 112 (04) : 417 - 427
  • [5] Boundary behavior of the Bergman kernel for generalized Fock-Bargmann-Hartogs domains
    Park, Jong-Do
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 509 (01)
  • [6] The Bergman kernel and projection on the Fock-Bargmann-Hartogs domain
    Dai, Jineng
    Li, Yuanyuan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (01) : 34 - 48
  • [7] Holomorphic Automorphism Groups of (m,1)-Circular Domains
    Shuxia Feng
    Hongjun Li
    Chunhui Qiu
    The Journal of Geometric Analysis, 2020, 30 : 3035 - 3063
  • [8] Holomorphic Automorphism Groups of (m,1)-Circular Domains
    Feng, Shuxia
    Li, Hongjun
    Qiu, Chunhui
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (03) : 3035 - 3063
  • [9] On the rigidity of proper holomorphic mappings for the Bergman-Hartogs domains
    Bi, Enchao
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 175
  • [10] Explicit formula of holomorphic automorphism group on complex homogeneous bounded domains
    Xu Yichao
    Chen Minru
    Ma Songya
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (10): : 1392 - 1404