On a Kirchhoff Singular p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(x)$\end{document}-Biharmonic Problem with Navier Boundary Conditions

被引:0
作者
Khaled Kefi
Kamel Saoudi
Mohammed Mosa Al-Shomrani
机构
[1] Northern Border University,Faculty of Computer Science and Information Technology
[2] Faculty of Sciences Tunis El Manar,Mathematics Department
[3] University of Imam Abdulrahman Bin Faisal,College of Sciences at Dammam
[4] Imam Abdulrahman Bin Faisal University,Basic and Applied Scientific Research Center
[5] King Abdulaziz University,Department of Mathematics, Faculty of Science
关键词
Kirchhoff problem; Navier boundary condition; Singular problem; -Biharmonic operator; Variational methods; Existence results; Generalized Lebesgue Sobolev spaces; 35J20; 35J60; 35G30; 35J35;
D O I
10.1007/s10440-020-00352-8
中图分类号
学科分类号
摘要
The purpose of the present paper is to study the existence of solutions for the following nonhomogeneous singular Kirchhoff problem involving the p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(x)$\end{document}-biharmonic operator: {M(t)(Δp(x)2u+a(x)|u|p(x)−2u)=g(x)u−γ(x)∓λf(x,u),in Ω,Δu=u=0,on ∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \left \{ \textstyle\begin{array}{l} M(t)\Big(\Delta ^{2}_{p(x)}u+a(x)|u|^{p(x)-2}u\Big) =g(x)u^{-\gamma (x)} \mp \lambda f(x,u),\quad \mbox{in }\Omega , \\ \Delta u=u=0, \quad \mbox{on }\partial \Omega , \end{array}\displaystyle \right . \end{aligned}$$ \end{document} where Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \subset {\mathbb{R}}^{N}$\end{document}, (N≥3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(N\geq 3)$\end{document} be a bounded domain with C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{2}$\end{document} boundary, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda $\end{document} is a positive parameter, γ:Ω‾⟶(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma : \overline{\Omega }\longrightarrow (0,1)$\end{document} be a continuous function, p∈C(Ω‾)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\in C(\overline{\Omega })$\end{document} with 1<p−:=infx∈Ωp(x)≤p+:=supx∈Ωp(x)<N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\displaystyle 1< p^{-}:=\inf _{x\in \Omega }p(x)\leq p^{+}:=\sup _{x \in \Omega }p(x)<\frac{N}{2}$\end{document}, as usual, p∗(x)=Np(x)N−2p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p^{*}(x)=\displaystyle \frac{N p(x)}{N-2p(x)}$\end{document}, g∈Lp∗(x)p∗(x)+γ(x)−1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g \in L^{\frac{p^{*}(x)}{p^{*}(x)+\gamma (x)-1}}(\Omega )$\end{document}. We assume that M(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M(t)$\end{document} is a continuous function with t:=∫Ω1p(x)(|Δu|p(x)+a(x)|u|p(x))dx,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t:=\int _{\Omega }\frac{1}{p(x)}(|\Delta u|^{p(x)}+a(x)|u|^{p(x)})dx, $$\end{document} and assumed to verify assertions (M1)-(M3) in Sect. 3, moreover f(x,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(x,u)$\end{document} are assumed to satisfy assumptions (f1)-(f6). In the proofs of our results we use variational techniques and monotonicity arguments combined with the theory of the generalized Lebesgue Sobolev spaces.
引用
收藏
页码:661 / 676
页数:15
相关论文
共 50 条
[1]  
Antontsev S.N.(2005)A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions Nonlinear Anal. 60 515-545
[2]  
Shmarev S.I.(1996)On the well-posedness of the Kirchhoff string Trans. Am. Math. Soc. 348 305-330
[3]  
Arosio A.(2011)Continuous spectrum of a fourth order nonhomogeneous elliptic equation with variable exponent Electron. J. Differ. Equ. 2011 1383-1406
[4]  
Panizzi S.(2006)Variable exponent, linear growth functionals in image processing SIAM J. Appl. Math. 66 819-822
[5]  
Ayoujil A.(2009)On an Appl. Math. Lett. 22 2666-2680
[6]  
El Amrous A.(2011)-Kirchhoff equation via Krasnoselskii’s genus Nonlinear Anal. 12 21-52
[7]  
Chen Y.(2007)Existence of solutions for a Hokkaido Math. J. 36 267-293
[8]  
Levine S.(2000)-Kirchhoff-type equation with Neumann boundary data Stud. Math. 143 179-192
[9]  
Rao M.(2013)The wave equation for the Bol. Soc. Parana. Mat. 31 749-760
[10]  
Corrêa F.J.S.A.(2001)-Laplacian J. Math. Anal. Appl. 262 1007-1021