Synthesis, characterization, photocatalytic evaluation, and toxicity studies of TiO2–Fe3+ nanocatalyst

被引:0
作者
Iliana Medina-Ramírez
Jingbo Louise Liu
Araceli Hernández-Ramírez
Cristina Romo-Bernal
Gladis Pedroza-Herrera
Juan Jáuregui-Rincón
Miguel A. Gracia-Pinilla
机构
[1] Universidad Autónoma de Aguascalientes,Departamento de Química
[2] Texas A&M University-Kingsville,Chemistry Department
[3] Texas A&M University-Kingsville,Chemical Biology Research Group (CBRG), Chemistry Department
[4] Universidad Autónoma de Nuevo León,Laboratorio de Foto
[5] Universidad Autónoma de Aguascalientes,catálisis y Electroquímica Ambiental, Facultad de Ciencias Químicas
[6] Universidad Autónoma de Nuevo León,Departamento de Ingeniería Bioquímica
[7] Universidad Autónoma de Nuevo León,Facultad de Ciencias Físico
来源
Journal of Materials Science | 2014年 / 49卷
关键词
TiO2; Methylene Blue; Photocatalytic Activity; High Resolution Transmission Electron Microscopy; Methyl Orange;
D O I
暂无
中图分类号
学科分类号
摘要
Based on our previous work on the green preparation of Ag–TiO2 photocatalyst with bactericidal activity under visible light, we extended our studies to the synthesis of TiO2–Fe3+ materials with enhanced photocatalytic activity for the degradation of recalcitrant organic pollutants in water. TiO2–Fe3+ nanopowders were synthesized using a robust, environmentally friendly procedure. Established amounts of Fe(NO3)3·9H2O and titanium tetraisopropoxide (TTIP) were mixed using glacial acetic acid as solvent. Hydrolysis of TTIP–Fe3+ was accomplished using a 30 % (W/V) Arabic gum aqueous solution. TiO2–Fe3+ nanopowders were obtained by thermal treatment at 400 °C. In order to elucidate the structure of these photocatalysts, microscopic and spectroscopic characterization techniques were applied. The high resolution transmission electron microscopy (HRTEM) analysis indicated the presence of uniformly distributed particles with average particle size of about 9 nm. According to the HRTEM lattice fringes, ring pattern, and selected area electron diffraction pattern, the crystalline part of the samples consists of anatase (PDF 01-086-1157 with the lattice constant of 3.7852, 9.5139 Å and 90°) as dominant phase. X-ray photoelectron spectroscopy (XPS) was applied to determine the oxidation state of iron. The XPS provides evidence for Fe3+ surface species in the TiO2–Fe3+ composite. Complete degradation of aqueous solutions (20 ppm) of methylene blue and/or methyl orange was accomplished after 4 h of treatment using 150 mg of TiO2–Fe3+/150 mL of dye solution. The in vitro toxicity of the materials was tested. The materials showed no toxicity against human red blood cells.
引用
收藏
页码:5309 / 5323
页数:14
相关论文
共 219 条
  • [1] Chatterjee D(2005)Visible light induced photocatalytic degradation of organic pollutants J Photochem Rev 1–2 186-205
  • [2] Dasgupta S(1995)Environmental applications of semiconductor photocatalysis Chem Rev 95 69-96
  • [3] Hoffmann MR(2007)Titanium dioxide nanomaterials: synthesis, properties, modifications and applications Chem Rev 107 2891-2959
  • [4] Martin ST(2002)Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts J Photochem Photobiol A 148 257-261
  • [5] Choi W(2012)Differing photo-oxidation mechanisms: electron transfer in TiO Langmuir 28 16933-16940
  • [6] Bahnemann DW(2007) versus iron-doped TiO Appl Catal B Environ 72 11-17
  • [7] Chen X(1996)Structure and activity of nanosized iron-doped anatase TiO J Photochem Photobiol A Chem 98 171-181
  • [8] Mao SS(2013) catalysts for phenol photocatalytic degradation J Am Chem Soc 135 10064-10072
  • [9] Yamashita H(2013)Photocatalytic properties of iron-doped titania semiconductors Appl Catal B Environ 142–143 458-464
  • [10] Harada M(2013)Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalyst Appl Catal B Environ 140–141 213-224