Nonholonomic Multibody Dynamics

被引:0
作者
Gerald Kielau
Peter Maißer
机构
[1] the Chemnitz University of Technology,Institute of Mechatronics at
来源
Multibody System Dynamics | 2003年 / 9卷
关键词
nonholonomic multibody systems; Riemannian geometry; Lagrangian equations;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with the nonholonomic multibody system dynamics from apoint of view which is caused by some actual applications in high-tecareas like high-speed train technology or biomechanics of somedisciplines in high-performance sports. Obviously, looking at suchproblems, there are very close connections between classical analyticaldynamics, differential geometry and modern control theory. But theseconnections cannot be used to get new composed results in solvingcomplicated problems of multibody system dynamics because correspondingsoftware tools are not enough in tune with each other. This paper willgive some ideas for developing a unified basis for modeling, simulationand control of nonholonomic multibody systems.
引用
收藏
页码:213 / 236
页数:23
相关论文
共 21 条
[1]  
Bullo F.(2002)On mechanical control systems with nonholonomic constraints and symmetries Systems & Control Lett. 45 133-143
[2]  
Žefran M.(1933)Der Schlitten ZAMM 13 71-76
[3]  
Caratheodory C.(1924)Ñber nichtholonome Systeme Math. Annalen 92 33-41
[4]  
Hamel G.(1980)On linearization of control systems Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 28 517-522
[5]  
Jacubczyk B.(1961)Dynamics of nonholonomic systems J. Appl. Mech. 28 574-578
[6]  
Respondek W.(1969)A dynamical explanation of the falling cat phenomenon Internat. J. Solids and Structures 5 663-670
[7]  
Kane T. R.(1934)Non Riemannian dynamics of rotating electrical machinery J. Math. Phys. 13 103-194
[8]  
Kane T.R.(1982)Modellgleichungen für Manipulatoren Techn. Mech. 3 64-78
[9]  
Scher M.P.(1988)Analytische Dynamik von Mehrkörpersystemen ZAMM 68 463-481
[10]  
Kron G.(1991)A differential geometric approach to the multi body system dynamics ZAMM 71 T116-T119