Pseudo 1-homogeneous distance-regular graphs

被引:0
作者
Aleksandar Jurišić
Paul Terwilliger
机构
[1] University of Ljubljana,Faculty of Computer and Informatic Sciences
[2] University of Wisconsin-Madison,Department of Mathematics
来源
Journal of Algebraic Combinatorics | 2008年 / 28卷
关键词
Distance-regular graphs; Primitive idempotents; Cosine sequence; Locally strongly regular; 1-homogeneous property; Tight distance-regular graph; Pseudo primitive idempotent; Tight edges; Pseudo 1-homogeneous;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ be a distance-regular graph of diameter d≥2 and a1≠0. Let θ be a real number. A pseudo cosine sequence for θ is a sequence of real numbers σ0,…,σd such that σ0=1 and ciσi−1+aiσi+biσi+1=θσi for all i∈{0,…,d−1}. Furthermore, a pseudo primitive idempotent forθ is Eθ=s ∑i=0dσiAi, where s is any nonzero scalar. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{v}$\end{document} be the characteristic vector of a vertex v∈VΓ. For an edge xy of Γ and the characteristic vector w of the set of common neighbours of x and y, we say that the edge xy is tight with respect toθ whenever θ≠k and a nontrivial linear combination of vectors \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E\hat{x}$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E\hat{y}$\end{document} and Ew is contained in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{Span}\{\hat{z}\mid z\in V{\Gamma},\ \partial(z,x)=d=\partial(z,y)\}$\end{document} . When an edge of Γ is tight with respect to two distinct real numbers, a parameterization with d+1 parameters of the members of the intersection array of Γ is given (using the pseudo cosines σ1,…,σd, and an auxiliary parameter ε).
引用
收藏
页码:509 / 529
页数:20
相关论文
共 14 条
  • [1] Curtin B.(2005)1-homogeneous, pseudo-1-homogeneous, and 1-thin distance-regular graphs J. Comb. Theory Ser. B 93 279-302
  • [2] Nomura K.(2002)Tight distance-regular graphs and the subconstituent algebra Eur. J. Comb. 23 793-816
  • [3] Go J.T.(2000)A local approach to 1-homogeneous graphs Des. Codes Cryptogr. 21 127-147
  • [4] Terwilliger P.M.(2000)Tight Distance-Regular Graphs J. Algebr. Comb. 12 163-197
  • [5] Jurišić A.(1999)Tight graphs and their primitive idempotents J. Algebr. Comb. 10 47-59
  • [6] Koolen J.(2002)The subconstituent algebra of a distance-regular graph; thin modules with endpoint one Linear Algebra Appl. 356 157-187
  • [7] Jurišić A.(2004)An inequality involving the local eigenvalues of a distance-regular graph J. Algebr. Comb. 19 143-172
  • [8] Koolen J.(2004)Distance-regular graphs, pseudo primitive idempotents, and the Terwilliger algebra Eur. J. Comb. 25 287-298
  • [9] Terwilliger P.(undefined)undefined undefined undefined undefined-undefined
  • [10] Pascasio A.A.(undefined)undefined undefined undefined undefined-undefined