Adding a rigid motion model to foreground detection: application to moving object detection in rivers

被引:0
作者
Imtiaz Ali
Julien Mille
Laure Tougne
机构
[1]  LIRIS,Universit´e Lyon 2, Universit´e de Lyon, CNRS
[2] UMR5205,Universit´e Lyon 1, Universit´e de Lyon, CNRS
[3] LIRIS,undefined
[4] UMR5205,undefined
[5] Optics Labs,undefined
来源
Pattern Analysis and Applications | 2014年 / 17卷
关键词
Mixture of Gaussian; Background subtraction; Object detection; Motion model;
D O I
暂无
中图分类号
学科分类号
摘要
Object detection in a dynamic background is a challenging task in many computer vision applications. In some situations, the motion of objects can be predicted thanks to its regularity (e.g., vehicle motion, pedestrian motion). In this article, we propose to model such motion knowledge and to use it as additional information to help in foreground detection. The inclusion of object motion information provides a measure for distinguishing moving objects from a background that has similar sizes and brightness levels. This information is obtained by applying statistical methods on data obtained during the training period. When available, prior knowledge can be incorporated into the foreground detection process to improve robustness and to decrease false detection. We apply this framework to moving object detection in rivers, one of the situations in which classic background subtraction algorithms fail. Our experiments show that the incorporation of prior motion data into background subtraction improves object detection.
引用
收藏
页码:567 / 585
页数:18
相关论文
共 58 条
  • [1] Wren C(1997)Pfinder: realtime tracking of the human body IEEE Trans Pattern Anal Machine Intell 19 780-785
  • [2] Azarbayejani A(2000)Learning patterns of activity using real-time tracking IEEE Trans Pattern Anal Machine Intell 22 747-757
  • [3] Darrell T(2005)Real time foreground–background segmentation using codebook model Real-Time Imaging 11 172-185
  • [4] Pentland A(1999)Statistical color models with application to skin detection Int J Comput Vis 46 274-280
  • [5] Stauffer C(2002)Face detection in color images IEEE Trans Pattern Anal Machine Intell 24 696-706
  • [6] Grimson W(2008)Moving object detection in spatial domain using background removal techniques - state-of-art Recent Patents Comput Sci 1 32-54
  • [7] Kim K(2005)Effective gaussian mixture learning for video background subtraction IEEE Trans Pattern Anal Machine Intell 27 827-832
  • [8] Thanarat T(2004)Tracking multiple vehicles using foreground, background and motion models Image Vis Comput 22 143-155
  • [9] Chalidabbhognse H(2002)Background and foreground modeling using nonparametric kernel density for visual surveillance Proc IEEE 90 1151-1163
  • [10] Harwood D(2004)Statistical modeling of complex background for foreground object detection IEEE Trans Image Process 13 1459-1472