A fractional-order mathematical model for lung cancer incorporating integrated therapeutic approaches

被引:0
|
作者
David Amilo
Bilgen Kaymakamzade
Evren Hincal
机构
[1] Near East University,Department of Mathematics
[2] Mathematics Research Center,undefined
[3] Near East University,undefined
来源
Scientific Reports | / 13卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses the dynamics of lung cancer by employing a fractional-order mathematical model that investigates the combined therapy of surgery and immunotherapy. The significance of this study lies in its exploration of the effects of surgery and immunotherapy on tumor growth rate and the immune response to cancer cells. To optimize the treatment dosage based on tumor response, a feedback control system is designed using control theory, and Pontryagin’s Maximum Principle is utilized to derive the necessary conditions for optimality. The results reveal that the reproduction number (R0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_0)$$\end{document} is 2.6, indicating that a lung cancer cell would generate 2.6 new cancer cells during its lifetime. The reproduction coefficient (Rc)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_c)$$\end{document} is 0.22, signifying that cancer cells divide at a rate that is 0.22 times that of normal cells. The simulations demonstrate that the combined therapy approach yields significantly improved patient outcomes compared to either treatment alone. Furthermore, the analysis highlights the sensitivity of the steady-state solution to variations in k5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_5$$\end{document} (the rate of division of cancer stem cells) and k13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{13}$$\end{document} (the rate of differentiation of cancer stem cells into progenitor cells). This research offers clinicians a valuable tool for developing personalized treatment plans for lung cancer patients, incorporating individual patient factors and tumor characteristics. The novelty of this work lies in its integration of surgery, immunotherapy, and control theory, extending beyond previous efforts in the literature.
引用
收藏
相关论文
共 50 条
  • [1] A fractional-order mathematical model for lung cancer incorporating integrated therapeutic approaches
    Amilo, David
    Kaymakamzade, Bilgen
    Hincal, Evren
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] The Dynamics of a Fractional-Order Mathematical Model of Cancer Tumor Disease
    Rehman, Muhammad Abaid Ur
    Ahmad, Jamshad
    Hassan, Ali
    Awrejcewicz, Jan
    Pawlowski, Witold
    Karamti, Hanen
    Alharbi, Fahad M.
    SYMMETRY-BASEL, 2022, 14 (08):
  • [3] Dynamics analysis and optimal control of a fractional-order lung cancer model
    Wu, Xingxiao
    Huang, Lidong
    Zhang, Shan
    Qin, Wenjie
    AIMS MATHEMATICS, 2024, 9 (12): : 35759 - 35799
  • [4] A mathematical model with fractional-order dynamics for the combined treatment of metastatic colorectal cancer
    Amilo, David
    Sadri, Khadijeh
    Kaymakamzade, Bilgen
    Hincal, Evren
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 130
  • [5] Fractional-Order Mathematical Model for Chronic Myeloid Leukaemia
    Fahmy, S.
    El-Geziry, A. M.
    Mohamed, E.
    AbdelAty, Amr. M.
    Radwan, A. G.
    2017 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN (ECCTD), 2017,
  • [6] Analyzing Unemployment Dynamics: A Fractional-Order Mathematical Model
    Rathee, Savita
    Narwal, Yogeeta
    Bansal, Komal
    Mathur, Trilok
    Emadifar, Homan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [7] Mathematical insights into chaos in fractional-order fishery model
    Chen Zakirullah
    Liang Lu
    Kamal Li
    Bahaaeldin Shah
    Thabet Abdalla
    undefined Abdeljawad
    Modeling Earth Systems and Environment, 2025, 11 (3)
  • [8] A mathematical modeling of patient-derived lung cancer stem cells with fractional-order derivative
    Ozkose, Fatma
    Yilmaz, Secil
    Senel, M. Tamer
    Yavuz, Mehmet
    Townley, Stuart
    Sarikaya, Medine Dogan
    PHYSICA SCRIPTA, 2024, 99 (11)
  • [9] Mathematical modeling of soybean drying by a fractional-order kinetic model
    Nicolin, Douglas Junior
    Defendi, Rafael Oliveira
    Rossoni, Diogo Francisco
    de Matos Jorge, Luiz Mario
    JOURNAL OF FOOD PROCESS ENGINEERING, 2018, 41 (02)
  • [10] A Mathematical Study of a Coronavirus Model with the Caputo Fractional-Order Derivative
    Belgaid, Youcef
    Helal, Mohamed
    Lakmeche, Abdelkader
    Venturino, Ezio
    FRACTAL AND FRACTIONAL, 2021, 5 (03)