Positive Solutions of a Discontinuous One-Dimensional Beam Equation

被引:0
作者
Jorge Rodríguez-López
机构
[1] Universidade de Santiago de Compostela,Departamento de Estatística, Análise Matemática e Optimización, Instituto de Matemáticas
[2]   Facultade de Matemáticas,undefined
[3] Campus Vida,undefined
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2021年 / 44卷
关键词
Fourth-order problem; Positive solution; Krasnosel’skiĭ theorem; Discontinuous differential equations; Multiplicity result; 34B18; 34A36; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
We provide sufficient conditions for the existence of one positive solution for a fourth--order beam equation with a discontinuous nonlinear term. Also a multiplicity result is established. They are based on a recent generalization of the Krasnosel’skiĭ fixed point theorem in cones.
引用
收藏
页码:2357 / 2370
页数:13
相关论文
共 50 条
[31]   Exact multiplicity and bifurcation diagrams of positive solutions of a one-dimensional multiparameter prescribed mean curvature problem [J].
Hung, Kuo-Chih ;
Cheng, Yan-Hsiou ;
Wang, Shin-Hwa ;
Chuang, Chia-Hao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (09) :3272-3299
[32]   Positive solutions for one-dimensional third-order p-Laplacian boundary value problems [J].
Yan Sun .
Advances in Difference Equations, 2017
[34]   Positive solutions for one-dimensional third-order p-Laplacian boundary value problems [J].
Sun, Yan .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[35]   Existence of Positive Solutions for Quasilinear Elliptic Equation with Supercritical Growth and Discontinuous Perturbation [J].
Zhang, Nian ;
Liang, Chuchu ;
Liu, Leilei .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2025, 51 (01)
[36]   POSITIVE SOLUTIONS FOR THE BEAM EQUATION UNDER CERTAIN BOUNDARY CONDITIONS [J].
Yang, Bo .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2005,
[37]   A BIFURCATION PHENOMENON FOR ONE-DIMENSIONAL MINKOWSKI-CURVATURE EQUATION [J].
Lee, Yong-Hoon ;
Yang, Rui .
HONAM MATHEMATICAL JOURNAL, 2021, 43 (03) :561-570
[38]   A one-dimensional prescribed curvature equation modeling the corneal shape [J].
Coelho, Isabel ;
Corsato, Chiara ;
Omari, Pierpaolo .
BOUNDARY VALUE PROBLEMS, 2014,
[39]   A one-dimensional prescribed curvature equation modeling the corneal shape [J].
Isabel Coelho ;
Chiara Corsato ;
Pierpaolo Omari .
Boundary Value Problems, 2014
[40]   Multiplicity and Calabi–Bernstein type asymptotic property of positive solutions for one-dimensional Minkowski-curvature problems [J].
Rui Yang .
Journal of Fixed Point Theory and Applications, 2022, 24