Ambarzumyan’s theorem for the quasi-periodic boundary conditions

被引:0
作者
Alp Arslan Kıraç
机构
[1] Pamukkale University,Department of Mathematics, Faculty of Arts and Sciences
来源
Analysis and Mathematical Physics | 2016年 / 6卷
关键词
Ambarzumyan theorem; Inverse spectral theory; Hill operator; Quasi-periodic ; 34A55; 34B30; 34L05; 47E05; 34B09;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain the classical Ambarzumyan’s theorem for the Sturm–Liouville operators Lt(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{t}(q)$$\end{document} with q∈L1[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in L^{1}[0,1]$$\end{document} and quasi-periodic boundary conditions, t∈[0,2π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in [0,2\pi )$$\end{document}, when there is not any additional condition on the potential q.
引用
收藏
页码:297 / 300
页数:3
相关论文
共 20 条
[1]  
Ambarzumian V(1929)Über eine Frage der Eigenwerttheorie Zeitschrift für Physik 53 690-695
[2]  
Cheng YH(2010)A note on eigenvalue asymptotics for Hill’s equation Appl. Math. Lett. 23 1013-1015
[3]  
Wang TE(2005)Corrigendum to extension of Ambarzumyan’s theorem to general boundary conditions J. Math. Anal. Appl. 309 764-768
[4]  
Wu CJ(1997)On the n-dimensional Ambarzumyan’s theorem Inverse Probl. 13 15-18
[5]  
Chern HH(1978)An inverse Sturm–Liouville problem with mixed given data SIAM J. Appl. Math. 34 676-680
[6]  
Law CK(1964)Determination of a differential equation by two of its spectra Usp. Mat. Nauk 19 3-63
[7]  
Wang HJ(2002)The spectral expansion for a nonself-adjoint Hill operator with a locally integrable potential J. Math. Anal. Appl. 265 76-90
[8]  
Chern HH(2007)On the nonself-adjoint differential operators with the quasiperiodic boundary conditions Int. Math. Forum 2 1703-1715
[9]  
Shen CL(2010)Ambarzumyan’s theorems for vectorial Sturm–Liouville systems with coupled boundary conditions Taiwan. J. Math. 14 1429-1437
[10]  
Hochstadt H(undefined)undefined undefined undefined undefined-undefined