On a Hölder Constant in the Theory of Quasiconformal Mappings

被引:0
作者
István Prause
机构
[1] University of Helsinki,Department of Mathematics and Statistics
来源
Computational Methods and Function Theory | 2014年 / 14卷
关键词
Quasiconformal mappings; Hölder continuity; Sharp inequalities; 30C62;
D O I
暂无
中图分类号
学科分类号
摘要
A K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-quasiconformal selfmap of the unit disk with identity boundary values satisfies the Hölder estimate |f(z)-f(w)|≤41-1/K|z-w|1/K.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |f(z)-f(w)| \le 4^{1-1/K} |z-w|^{1/K}. \end{aligned}$$\end{document}The constant 41-1/K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4^{1-1/K}$$\end{document} is sharp.
引用
收藏
页码:483 / 486
页数:3
相关论文
共 1 条
[1]  
Mori A(1956)On an absolute constant in the theory of quasi-conformal mappings J. Math. Soc. Jpn. 8 156-166