Superintegrable cases of four-dimensional dynamical systems
被引:0
作者:
Oğul Esen
论文数: 0引用数: 0
h-index: 0
机构:Gebze Technical University,Department of Mathematics
Oğul Esen
Anindya Ghose Choudhury
论文数: 0引用数: 0
h-index: 0
机构:Gebze Technical University,Department of Mathematics
Anindya Ghose Choudhury
Partha Guha
论文数: 0引用数: 0
h-index: 0
机构:Gebze Technical University,Department of Mathematics
Partha Guha
Hasan Gümral
论文数: 0引用数: 0
h-index: 0
机构:Gebze Technical University,Department of Mathematics
Hasan Gümral
机构:
[1] Gebze Technical University,Department of Mathematics
[2] Surendranath College,Department of Physics
[3] Bose National Centre for Basic Sciences,undefined
[4] JD Block,undefined
[5] Australian College of Kuwait,undefined
来源:
Regular and Chaotic Dynamics
|
2016年
/
21卷
关键词:
first integrals;
Darboux polynomials;
Jacobi’s last multiplier;
4D Poisson structures;
tri-Hamiltonian structures;
Shivamoggi equations;
generalized Raychaudhuri equations;
Lü system and Qi system;
34C14;
34C20;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Degenerate tri-Hamiltonian structures of the Shivamoggi and generalized Raychaudhuri equations are exhibited. For certain specific values of the parameters, it is shown that hyperchaotic Lü and Qi systems are superintegrable and admit tri-Hamiltonian structures.