Higher Order Mortar Finite Element Methods in 3D with Dual Lagrange Multiplier Bases

被引:0
|
作者
B. P. Lamichhane
R. P. Stevenson
B. I. Wohlmuth
机构
[1] University of Stuttgart,Institute of Applied Analysis and Numerical Simulation
[2] Utrecht University,Department of Mathematics
来源
Numerische Mathematik | 2005年 / 102卷
关键词
35N55; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
Mortar methods with dual Lagrange multiplier bases provide a flexible, efficient and optimal way to couple different discretization schemes or nonmatching triangulations. Here, we generalize the concept of dual Lagrange multiplier bases by relaxing the condition that the trace space of the approximation space at the slave side with zero boundary condition on the interface and the Lagrange multiplier space have the same dimension. We provide a new theoretical framework within this relaxed setting, which opens a new and simpler way to construct dual Lagrange multiplier bases for higher order finite element spaces. As examples, we consider quadratic and cubic tetrahedral elements and quadratic serendipity hexahedral elements. Numerical results illustrate the performance of our approach.
引用
收藏
页码:93 / 121
页数:28
相关论文
共 50 条
  • [1] Higher order mortar finite element methods in 3D with dual lagrange multiplier bases
    Lamichhane, BP
    Stevenson, RP
    Wohlmuth, BI
    NUMERISCHE MATHEMATIK, 2005, 102 (01) : 93 - 121
  • [2] Higher order dual Lagrange multiplier spaces for mortar finite element discretizations
    Lamichhane, BP
    Wohlmuth, BI
    CALCOLO, 2002, 39 (04) : 219 - 237
  • [3] Higher order dual Lagrange multiplier spaces¶for mortar finite element discretizations
    B. P. Lamichhane
    B. I. Wohlmuth
    CALCOLO, 2002, 39 : 219 - 237
  • [4] A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D
    Lamichhane, BP
    Wohlmuth, BI
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (01): : 73 - 92
  • [5] A mortar finite element method using dual spaces for the Lagrange multiplier
    Wohlmuth, BI
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (03) : 989 - 1012
  • [6] A comparison of dual Lagrange multiplier spaces for mortar finite element discretizations
    Wohlmuth, BI
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (06): : 995 - 1012
  • [7] DUAL QUADRATIC MORTAR FINITE ELEMENT METHODS FOR 3D FINITE DEFORMATION CONTACT
    Popp, A.
    Wohlmuth, B. I.
    Gee, M. W.
    Wall, W. A.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04): : B421 - B446
  • [8] Convergence of Lagrange finite element methods for Maxwell eigenvalue problem in 3D
    Boffi, Daniele
    Gong, Sining
    Guzman, Johnny
    Neilan, Michael
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 44 (04) : 1911 - 1945
  • [9] INTEGRATION IN HIGHER-ORDER FINITE ELEMENT METHOD IN 3D
    Kus, Pavel
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 15, 2010, : 131 - 136
  • [10] The polynomial-preserving recovery for higher order finite element methods in 2D and 3D
    Naga, A
    Zhang, Z
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2005, 5 (03): : 769 - 798