The lattice of ai-semiring varieties satisfying xn≈x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^n\approx x$$\end{document} and xy≈yx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy\approx yx$$\end{document}

被引:0
作者
Miaomiao Ren
Xianzhong Zhao
Yong Shao
机构
[1] Northwest University,School of Mathematics
关键词
Ai-semiring; Variety; Lattice; Identity; Finitely based variety; Finitely generated variety;
D O I
10.1007/s00233-020-10092-8
中图分类号
学科分类号
摘要
We study the lattice L(CSr(n,1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {L}}}({{\mathbf{CSr}}}(n, 1))$$\end{document} of subvarieties of the ai-semiring variety CSr(n,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf{CSr}}}(n, 1)$$\end{document} defined by xn≈x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^n\approx x$$\end{document} and xy≈yx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy\approx yx$$\end{document}. We divide L(CSr(n,1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {L}}}({{\mathbf{CSr}}}(n, 1))$$\end{document} into five intervals and provide an explicit description of each member of these intervals except [CSr(2,1),CSr(n,1)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[{{\mathbf{CSr}}}(2, 1), {\mathbf{CSr}}(n, 1)]$$\end{document}. Based on these results, we show that if n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} is square-free, then L(CSr(n,1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {L}}}({{\mathbf{CSr}}}(n, 1))$$\end{document} is a distributive lattice of order 2+2r+1+3r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+2^{r+1}+3^r$$\end{document}, where r denotes the number of prime divisors of n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document}. Also, all members of L(CSr(n,1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {L}}}({{\mathbf{CSr}}}(n, 1))$$\end{document} are finitely based and finitely generated and so CSr(n,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf{CSr}}}(n, 1)$$\end{document} is a Cross variety. Moreover, the axiomatic rank of each member of L(CSr(n,1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {L}}({{\mathbf{CSr}}}(n, 1))$$\end{document} is less than four.
引用
收藏
页码:542 / 567
页数:25
相关论文
共 46 条
  • [1] Dolinka I(2007)A nonfintely based finite semiring Int. J. Algebra Comput. 17 1537-1551
  • [2] Gajdoš P(2010)On free semilattice-ordered semigroups satisfying Semigroup Forum 80 92-104
  • [3] Kuřil M(2005)Varieties generated by ordered bands I Order 22 109-128
  • [4] Ghosh S(2008)Flat algebras and the translation of universal Horn logic to equational logic J. Symb. Logic 73 90-128
  • [5] Pastijn F(1973)Identities satisfied by a finite ring J. Algebra 26 298-318
  • [6] Zhao XZ(2005)On varieties of semilattice-ordered semigroups Semigroup Forum 71 27-48
  • [7] Jackson M(1973)Varieties of associative rings I Algebra Logic 12 150-167
  • [8] Kruse RL(1978)Varieties that make one Cross J. Aust. Math. Soc. (Ser. A) 26 368-382
  • [9] Kuřil M(1979)Varieties of Contrib. Gen. Algebra (Proc. Klagenfurt Conf. 1978) 1 213-218
  • [10] Polák L(1988)-distributive bisemilattices Semigroup Forum 37 79-91