Basic Reproduction Ratios for Periodic Abstract Functional Differential Equations (with Application to a Spatial Model for Lyme Disease)

被引:1
作者
Xing Liang
Lei Zhang
Xiao-Qiang Zhao
机构
[1] University of Science and Technology of China,School of Mathematical Sciences
[2] Memorial University of Newfoundland,Department of Mathematics and Statistics
来源
Journal of Dynamics and Differential Equations | 2019年 / 31卷
关键词
Basic reproduction ratio; Abstract functional differential system; Periodic solution; Lyme disease; Threshold dynamics; 34K20; 35K57; 37B55; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we develop the theory of basic reproduction ratios R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}_0$$\end{document} for abstract functional differential systems in a time-periodic environment. It is proved that R0-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}_0-1$$\end{document} has the same sign as the exponential growth bound of an associated linear system. Then we apply it to a time-periodic Lyme disease model with time-delay and obtain a threshold type result on its global dynamics in terms of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}_0$$\end{document}.
引用
收藏
页码:1247 / 1278
页数:31
相关论文
共 93 条
  • [1] Amann H(1976)Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces SIAM Rev. 18 620-709
  • [2] Bacaër N(2011)Genealogy with seasonality, the basic reproduction number, and the influenza pandemic J. Math. Biol. 62 741-762
  • [3] Dads EHA(2012)On the biological interpretation of a definition for the parameter J. Math. Biol. 65 601-621
  • [4] Bacaër N(2006) in periodic population models J. Math. Biol. 53 421-436
  • [5] Dads EHA(1991)The epidemic threshold of vector-borne diseases with seasonality Arch. Math. (Basel) 56 49-57
  • [6] Bacaër N(2002)Monotonicity of spectral radius for positive operators on ordered banach spaces Am. Nat. 160 348-359
  • [7] Guernaoui S(1990)Stage-structured infection transmission and a spatial epidemic: a model for Lyme disease J. Math. Biol. 28 365-382
  • [8] Burlando L(2015)On the definition and the computation of the basic reproduction ratio Math. Biosci. Eng. 12 661-686
  • [9] Caraco T(2015) in models for infectious diseases in heterogeneous populations J. Math. Biol. 71 1017-1048
  • [10] Glavanakov S(1997)Stability and persistence in ODE models for populations with many stages J. Differ. Equ. 137 340-362