Energy decay of a viscoelastic wave equation with supercritical nonlinearities

被引:0
作者
Yanqiu Guo
Mohammad A. Rammaha
Sawanya Sakuntasathien
机构
[1] Florida International University,Department of Mathematics and Statistics
[2] University of Nebraska-Lincoln,Department of Mathematics
[3] Silpakorn University,Department of Mathematics, Faculty of Science
来源
Zeitschrift für angewandte Mathematik und Physik | 2018年 / 69卷
关键词
Nonlinear waves; Viscoelasticity; Memory; Source; Damping; Supercritical; Energy decay; 35L05; 35L10; 35L71; 35B35; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a study of the asymptotic behavior of the solutions for the history value problem of a viscoelastic wave equation which features a fading memory term as well as a supercritical source term and a frictional damping term: utt-k(0)Δu-∫0∞k′(s)Δu(t-s)ds+|ut|m-1ut=|u|p-1u,inΩ×(0,T),u(x,t)=u0(x,t),inΩ×(-∞,0],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} u_{tt}- k(0) \Delta u - \int \limits _0^{\infty } k'(s) \Delta u(t-s) \hbox {d}s +|u_t|^{m-1}u_t =|u|^{p-1}u, \text { in } \Omega \times (0,T), \\ u(x,t)=u_0(x,t), \quad \text { in } \Omega \times (-\infty ,0], \end{array}\right. } \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded domain in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^3$$\end{document} with a Dirichlét boundary condition and u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0$$\end{document} represents the history value. A suitable notion of a potential well is introduced for the system, and global existence of solutions is justified, provided that the history value u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0$$\end{document} is taken from a subset of the potential well. Also, uniform energy decay rate is obtained which depends on the relaxation kernel -k′(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-k'(s)$$\end{document} as well as the growth rate of the damping term. This manuscript complements our previous work (Guo et al. in J Differ Equ 257:3778–3812, 2014, J Differ Equ 262:1956–1979, 2017) where Hadamard well-posedness and the singularity formulation have been studied for the system. It is worth stressing the special features of the model, namely the source term here has a supercritical growth rate and the memory term accounts to the full past history that goes back to -∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\infty $$\end{document}.
引用
收藏
相关论文
共 82 条
[1]  
Aassila M(2002)Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term Calc. Var. Partial Differ. Equ. 15 155-180
[2]  
Cavalcanti MM(2008)Decay estimates for second order evolution equations with memory J. Funct. Anal. 254 1342-1372
[3]  
Domingos Cavalcanti VN(2009)On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms Discrete Contin. Dyn. Syst. Ser. S 2 583-608
[4]  
Alabau-Boussouira F(2012)Convex integrals on Sobolev spaces J. Convex Anal. 19 837-852
[5]  
Cannarsa P(2006)Existence and decay of solutions of a viscoelastic equation with a nonlinear source Nonlinear Anal. 64 2314-2331
[6]  
Sforza D(2008)Blow-up of weak solutions for the semilinear wave equations with nonlinear boundary and interior sources and damping Appl. Math. (Warsaw) 35 281-304
[7]  
Alves CO(2008)Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping Discrete Contin. Dyn. Syst. 22 835-860
[8]  
Cavalcanti MM(2010)Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping J. Differ. Equ. 249 654-683
[9]  
Domingos Cavalcanti VN(2011)On a wave equation with supercritical interior and boundary sources and damping terms Mathematische Nachrichten 284 2032-2064
[10]  
Rammaha MA(2015)Existence and sharp decay rate estimates for a von Karman system with long memory Nonlinear Anal. Real World Appl. 22 289-306