Verification of hyperbolicity for attractors of some mechanical systems with chaotic dynamics

被引:0
作者
Sergey P. Kuznetsov
Vyacheslav P. Kruglov
机构
[1] Udmurt State University,
[2] Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS,undefined
[3] Saratov Branch,undefined
[4] Saratov State University,undefined
来源
Regular and Chaotic Dynamics | 2016年 / 21卷
关键词
dynamical system; chaos; attractor; hyperbolic dynamics; Lyapunov exponent; Smale–Williams solenoid; parametric oscillations; 37D20; 37D45; 70G60; 70Q05;
D O I
暂无
中图分类号
学科分类号
摘要
Computer verification of hyperbolicity is provided based on statistical analysis of the angles of intersection of stable and unstable manifolds for mechanical systems with hyperbolic attractors of Smale–Williams type: (i) a particle sliding on a plane under periodic kicks, (ii) interacting particles moving on two alternately rotating disks, and (iii) a string with parametric excitation of standing-wave patterns by a modulated pump. The examples are of interest as contributing to filling the hyperbolic theory of dynamical systems with physical content.
引用
收藏
页码:160 / 174
页数:14
相关论文
共 83 条
[1]  
Smale S.(1967)Differentiable Dynamical Systems Bull. Amer. Math. Soc 73 747-817
[2]  
Williams R. F.(1974)Expanding Attractors Publ. Math. Inst. Hautes Études Sci 43 169-203
[3]  
Andronov A.(1937)Systèmes grossiers Dokl. Akad. Nauk. SSSR 14 247-250
[4]  
Pontryagin L.(1997)Problems of Present-Day Nonlinear Dynamics Her. Russ. Acad. Sci 67 257-262
[5]  
Rabinovich M. I.(2014)Scientific Heritage of L.P. Shilnikov Regul. Chaotic Dyn 19 435-460
[6]  
Gaponov-Grekhov A.V.(2014)Nonlinear Dynamics of the Rattleback: A Nonholonomic Model Physics–Uspekhi 57 453-460
[7]  
Afraimovich V. S.(2013)Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone Regul. Chaotic Dyn 18 521-538
[8]  
Gonchenko S.V.(2015)Plate Falling in a Fluid: Regular and Chaotic Dynamics of Finite-Dimensional Models Regul. Chaotic Dyn 20 345-382
[9]  
Lerman L.M.(1978)On the Nature of Turbulence Sov. Phys. Usp 21 429-442
[10]  
Shilnikov A. L.(1948)A Mathematical Theory of Communication Bell Syst. Tech. J 27 379-423