Periodic solutions for second order Hamiltonian systems

被引:0
作者
Qiongfen Zhang
X. H. Tang
机构
[1] Guilin University of Technology,College of Science
[2] Central South University,School of Mathematical Sciences and Computing Technology
来源
Applications of Mathematics | 2012年 / 57卷
关键词
periodic solutions; minimax methods; second order Hamiltonian systems; 34C25; 58E05; 70H05;
D O I
暂无
中图分类号
学科分类号
摘要
By using the least action principle and minimax methods in critical point theory, some existence theorems for periodic solutions of second order Hamiltonian systems are obtained.
引用
收藏
页码:407 / 425
页数:18
相关论文
共 22 条
[1]  
Berger M. S.(1977)On the solvability of semilinear gradient operator equations Adv. Math. 25 97-132
[2]  
Schechter M.(1987)Semi-coercive monotone variational problems Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 118-130
[3]  
Mawhin J.(1986)Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance Ann. Inst. Henri. Poincaré, Anal. Non Linéaire 3 431-453
[4]  
Mawhin J.(1980)On subharmonic solutions of Hamiltonian systems Commun. Pure Appl. Math. 33 609-633
[5]  
Willem M.(1995)Periodic solutions of non-autonomous second order systems with quasisubadditive potential J. Math. Anal. Appl. 189 671-675
[6]  
Rabinowitz P.H.(1996)Periodic solutions of nonautonomous second order systems J. Math. Anal. Appl. 202 465-469
[7]  
Tang C. L.(1998)Periodic solutions of nonautonomous second order systems with sublinear nonlinearity Proc. Am. Math. Soc. 126 3263-3270
[8]  
Tang C. L.(2001)Periodic solutions for second order systems with not uniformly coercive potential J. Math. Anal. Appl. 259 386-397
[9]  
Tang C. L.(2004)Saddle point characterization and multiplicity of periodic solutions of nonautonomous second order systems Nonlinear Anal., Theory Methods Appl. 58 899-907
[10]  
Tang C. L.(1999)Periodic solutions of a class of nonautonomous second order systems J. Math. Anal. Appl. 236 227-235