Rank permutability and additive operators preserving related rank product conditions

被引:0
作者
Alieva A.A. [1 ]
Guterman A.E. [1 ]
机构
[1] Faculty of Algebra, Department of Mathematics and Mechanics, Moscow State University
关键词
Additive Operator; Invertible Matrix; Arbitrary Matrix; Scalar Matrix; Invertible Matrice;
D O I
10.1007/s10958-007-0414-9
中图分类号
学科分类号
摘要
We characterize bijective additive operators preserving rank product conditions of a certain type. We also show that if an additive operator preserves the corresponding condition strongly, then it is automatically nonsingular. © 2007 Springer Science+Business Media, Inc.
引用
收藏
页码:177 / 185
页数:8
相关论文
共 14 条
  • [1] Alieva A., Guterman A., Linear preservers of rank permutability, Linear Algebra Appl., 384, pp. 97-108, (2004)
  • [2] Botta P., Linear maps that preserve singular and nonsingular matrices, Linear Algebra Appl., 20, pp. 45-49, (1978)
  • [3] Cao C.-G., Zhang X., Additive surjections preserving rank one and applications, Georgian Math. J., 11, 2, pp. 209-217, (2004)
  • [4] Dieudonne J., Sur une généralisation du groupe orthogonal à quatre variables, Arch. Math., 1, pp. 282-287, (1949)
  • [5] Fosner A., Semrl P., Additive Maps on Matrix Algebras Preserving Invertibility or Singularity
  • [6] Frobenius G., Über die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitzungsber. Preuss. Akad. Wiss., pp. 994-1015, (1897)
  • [7] Hua L.-K., A theorem on matrices over a field and its applications, J. Chinese Math. Soc., 1, pp. 110-163, (1951)
  • [8] Kaplansky I., Algebraic and Analytic Aspects of Operator Algebras, (1970)
  • [9] Kuzma B., Additive mappings decreasing rank one, Linear Algebra Appl., 348, pp. 175-187, (2002)
  • [10] Livshits L., MacDonald G., Mathes B., Okninski J., Radjavi H., Matrix semigroups with commutable rank, Semigroup Forum, 67, 2, pp. 288-316, (2003)