An Euler product transform applied to q-series

被引:0
作者
Geoffrey B. Campbell
机构
[1] La Trobe University,Department of Mathematics
来源
The Ramanujan Journal | 2006年 / 12卷
关键词
Dirichlet series and zeta functions; Basic hypergeometric functions in one variable; Dirichlet series and other series expansions; Exponential series;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces the concept of a D-analogue. This is a Dirichlet series analogue for the already known and well researched hypergeometric q-series, often called the basic hypergeometric series. The main result in this paper is a transform, based on an Euler product over the primes. Examples given are D-analogues of the q-binomial theorem and the q-Gauss summation.
引用
收藏
页码:267 / 293
页数:26
相关论文
共 14 条
[1]  
Andrews G.E.(1981)The hard-hexagon model and Rogers-Ramanujan type identities Proc Nat. Acad. Sci. USA 78 5290-5292
[2]  
Askey R.A.(1978)The Applicable Analysis 8 125-141
[3]  
Askey R.(1980)-gamma and Amer. Math. Monthly 87 346-359
[4]  
Campbell G.B.(1992)-beta functions J. Ramanujan Soc. 7 52-63
[5]  
Campbell G.B.(1993)Ramanujan’s extensions of the gamma and beta functions Internat. J. Math. & Math. Sci. 16 359-372
[6]  
Campbell G.B.(1994)Multiplicative functions over Riemann zeta function products Internat. J. Math. & Math. Sci. 17 637-654
[7]  
Glasser M.L.(1980)Dirichlet summations and products over primes Chem.: Adv. Persp. 5 67-139
[8]  
Zucker I.J.(1992)Infinite products over visible lattice points Physica A 186 441-481
[9]  
Ninham B.W.(1992)Lattice Sums, Th J. Number Theory 41 231-255
[10]  
Glasser M.L.(1995)Apery Numbers, Jacobi Sums, and Special Values of Generalized J. Number Theory 52 125-144