Si/SiO2 Structures with Quantum Size Effects: The Construction of a Low-Dimensional Nanoscale Electronic System in the Interface Layer of Si by Incorporating a Regularly Distributed Charge into SiO2

被引:2
作者
Gol'dman E.I. [1 ]
Gulyaev Yu.V. [1 ]
Zhdan A.G. [1 ]
Chucheva G.V. [1 ]
机构
[1] Inst. of Radio Eng. and Electronics, Russian Academy of Sciences, Moscow
关键词
SiO2; Charge Distribution; Interface Layer; Dielectric Layer; Scanning Tunneling Microscope;
D O I
10.1023/A:1011940712139
中图分类号
学科分类号
摘要
A novel approach to producing long-lived, reconfigurable, self-organized nanoscale electronic systems of a low dimension (quantum wells, wires, dots, superlattices, etc.) in a semiconductor is discussed. This approach consists of creating a regular charge distribution in an adjacent dielectric, so that a two-dimensional potential distribution is induced in the interface layer of the semiconductor. Advanced methods to generate a desired charge distribution in dielectrics are reviewed. They use (1) the local injection of electrons or ions into a thin dielectric layer by a precisely focused beam, (2) the local electronic or ionic polarization of dielectrics with a scanning tunneling microscope, or (3) nanoscale charge patterns that can be spontaneously formed by electrons or ions in dielectrics. The possible applications of the approach are considered in the context of the Si/SiO2 system.
引用
收藏
页码:312 / 316
页数:4
相关论文
共 60 条
[1]  
Alferov Zh.I., History and Future of Semiconductor Heterostructures, Fiz. Tekh. Poluprovodn., 32, 1, pp. 3-19, (1998)
[2]  
Valiev K.A., Rakov A.V., Fizicheskie Osnovy Submikronnoi Litografii v Mikroelektronike (Physical Principles of Submicron Lithography in Microelectronics), (1984)
[3]  
Thompson L.F., Introduction to Microlithography, (1994)
[4]  
Broers A.N., Practical and Fundamental Aspects of Lithography, Materials for Microlithography, pp. 11-38, (1984)
[5]  
Kazor A., Gwilliam R.M., Jeynes C., Et al., Ion Implantation Technology - 94, (1994)
[6]  
Ledentsov N.N., Ustinov V.M., Shchukin V.A., Kop'ev P.S., Alferov Zh.I., Bimberg V., Heterostructures with Quantum Dots: Fabrication, Properties, and Lasers, Fiz. Tekh. Poluprovodn, 32, 4, pp. 385-410, (1998)
[7]  
Mil'vidskii M.G., Chaldyshev V.V., Nanoscale Atomic Clusters in Semiconductors: A New Approach to Controlling the Properties of Materials, Fiz. Tekh. Poluprovodn, 32, 5, pp. 513-522, (1998)
[8]  
Emeleus C.J., Milton B., Long A.R., Davies J.H., Petticrem D.E., Holland M.C., Large Periodic Potential under Lateral Surface Superlattices Fabricated from Heteroepitaxial Stressor Layers, Appl. Phys. Lett., 73, 10, pp. 1412-1414, (1998)
[9]  
Deng X., Krishnamurthy M., Self-assembly of Quantum-Dot Molecules: Heterogeneous Nucleation of SiGe Islands on Si(100), Phys. Rev. Lett., 81, 7, pp. 1473-1476, (1998)
[10]  
Shi Y., Saito K., Ishikuro H., Hiramoto T., Characteristics of Narrow Channel MOSFET Memory Based on Silicon Nanocrystals, Jpn. J. Appl. Phys., Part 1, 38, 48, pp. 2453-2456, (1999)