Completely controllable pairs of matrices with prescribed positions

被引:0
作者
Glória Cravo
机构
[1] Universidade da Madeira,Centro de Ciências Exactas e da Engenharia
[2] Universidade de Lisboa,Centro de Estruturas Lineares e Combinatórias
来源
Annali di Matematica Pura ed Applicata | 2012年 / 191卷
关键词
Controllability; Characteristic polynomials; Matrix completion problems; 15A18; 15A29; 93B05; 93C05;
D O I
暂无
中图分类号
学科分类号
摘要
Let F be a field and let n, p1, p2, p3 be positive integers such that n = p1 + p2 + p3. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C_{1},C_{2}) = \left( \left[\begin{array}{cccccccccc}C_{1,1} & C_{1,2}\\C_{2,1} & C_{2,2}\end{array}\right] , \left[\begin{array}{c}C_{1,3}\\C_{2,3}\end{array}\right] \right),$$\end{document}where the blocks Ci,j are of type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p_{i}\times p_{j},i\in\{1,2\},j\in \{1,2,3\}}$$\end{document}. In this paper, we describe necessary and sufficient conditions under which the pair (C1, C2) is completely controllable, when three arbitrary positions are prescribed and the others are free. Furthermore, we still provide some particular solutions for the prescription of the characteristic polynomial of a partitioned matrix of the form\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[\begin{array}{cccccccccccc}C_{1,1} & C_{1,2} & C_{1,3}\\ C_{2,1} & C_{2,2} & C_{2,3}\\ C_{3,1} & C_{3,2} & C_{3,3}\end{array}\right] \in F^{n\times n},$$\end{document}where the blocks Ci,j are of type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p_{i}\times p_{j},i,j\in\{1,2,3\}}$$\end{document}, when some of its positions are prescribed and the others vary.
引用
收藏
页码:783 / 802
页数:19
相关论文
共 32 条
[1]  
Cabral I.(1995)Matrices with prescribed submatrices and the number of invariant polynomials Linear Algebra Appl. 219 207-224
[2]  
Cravo G.(2009)Matrix completion problems Linear Algebra Appl. 430 2511-2540
[3]  
Cravo G.(2001)Characteristic polynomials and controllability of partially prescribed matrices Linear Algebra Appl. 335 157-166
[4]  
Dias da Silva J.A.(2000)Eigenvalues of matrices with several prescribed blocks Linear Algebra Appl. 311 13-24
[5]  
Silva F.C.(2003)Eigenvalues of matrices with several prescribed blocks II Linear Algebra Appl. 364 81-89
[6]  
Cravo G.(1974)Matrices with prescribed entries and characteristic polynomial Proc. Am. Math. Soc. 45 31-37
[7]  
Silva F.C.(1993)Controllability by completions of partial upper triangular matrices Math. Control Signals Syst. 6 30-40
[8]  
Cravo G.(1983)Existence of matrices with prescribed eigenvalues and entries Linear Multilinear Algebra 14 315-342
[9]  
Silva F.C.(1974)Structural controllability IEEE Trans. Autom. Control AC-19 201-208
[10]  
Dias da Silva J.A.(1997)The characteristic polynomial of a matrix with prescribed off-diagonal blocks Linear Algebra Appl. 250 21-29