Rates of approximation in the multidimensional invariance principle for sums of I.I.D. random vectors with finite moments

被引:2
作者
Götze F. [1 ]
Zaitsev A.Y. [2 ]
机构
[1] Fakultät für Mathematik, Universität Bielefeld, Bielefeld
[2] St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg
关键词
Russia; Random Vector; Mathematical Institute; Gaussian Approximation; Invariance Principle;
D O I
10.1007/s10958-010-9935-8
中图分类号
学科分类号
摘要
The aim of this paper is to derive consequences of a result of Götze and Zaitsev (2008). We show that the i.i.d. case of this result implies a multidimensional version of some results of Sakhanenko (1985). We establish bounds for the rate of strong Gaussian approximation of sums of i. i. d. Rd-valued random vectors ξj having finite moments E {double pipe}ξj{double pipe}γ, γ > 2. Bibliography: 13 titles. © 2010 Springer Science+Business Media, Inc.
引用
收藏
页码:495 / 500
页数:5
相关论文
共 12 条
[1]  
Borovkov A.A., On the rate of convergence in the invariance principle, Teor. Veroyatn. Primen., 18, pp. 207-225, (1973)
[2]  
de Acosta A., Inequalities for B-valued random vectors with applications to the strong law of large numbers, Ann. Prob., 9, pp. 157-161, (1981)
[3]  
de la Pina V.H., Gine Deoupling E., From Dependence to Independence. Randomly Stopped Processes. U-Statistics and Processes. Martingales and Beyond, (1999)
[4]  
Einmahl U., Extensions of results of Komlós, Major, and Tusnády to the multivariate case, J. Multivar. Anal., 28, pp. 20-68, (1989)
[5]  
Gotze F., Zaitsev A.Y., Bounds for the rate of strong approximation in the multidimensional invariance principle, Teor. Veroyatn. Primen., 153, pp. 100-123, (2008)
[6]  
Johnson W.B., Shechtman G., Zinn J., Best constants in moment inequalities for linear combinations of independent and exchangeable random variables, Ann. Probab., 13, pp. 234-253, (1985)
[7]  
Komlos J., Major P., Tusnady G., An approximation of partial sums of independent RV'-s and the sample. DF. I
[8]  
II, Z. Wahrsch. Verw. Geb., 32, pp. 111-131, (1975)
[9]  
Major P., The approximation of partial sums of independent r.v'.s, Z. Wahrsch. Verw. Geb., 35, pp. 213-220, (1976)
[10]  
Rosenthal H.P., On the subspaces of L<sup>p</sup> (p > 2) spanned by sequences of independent random variables, Israel J. Math., 8, pp. 273-303, (1970)