Compact composition operators acting between weighted Bergman spaces of the unit ball

被引:0
作者
Sei-ichiro Ueki
机构
[1] Ibaraki University,Faculty of Engineering
来源
Archiv der Mathematik | 2009年 / 93卷
关键词
Primary 47B33; Secondary 32A36; Composition operators; Essential norm; Bergman spaces;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a composition operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C_{\varphi}}$$\end{document} on the weighted Bergman space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_{\alpha}^p(B)}$$\end{document} of the unit ball B in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{C}}^N}$$\end{document} . Under a natural condition we estimate the essential norm of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C_{\varphi}}$$\end{document} . As a consequence of this estimate, we also give a function-theoretic characterization of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document} that induces a compact composition operator on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_{\alpha}^p(B)}$$\end{document} .
引用
收藏
页码:461 / 473
页数:12
相关论文
共 15 条
[1]  
Cima J.A.(1995)Composition operators between Bergman spaces on convex domains in J. Operator Theory 33 363-369
[2]  
Mercer P.R.(2001)Compact composition operators on weighted Bergman spaces of the unit ball J. Operator Theory 45 335-355
[3]  
Clahane D.D.(2006)Composition operators between Bergman spaces of functions of several variables Comtemp. Math. 393 123-132
[4]  
Koo H.(2006)A note on composition operators in several variables RIMS Kokyuroku 1519 103-110
[5]  
Smith W.(1986)Angular derivatives and compact composition operators on the Hardy and Bergman spaces Canad. J. Math. 38 878-906
[6]  
Koo H.(2006)Composition operators on embedded disks J. Operator Theory 56 423-449
[7]  
MacCluer B.D.(2005)Weighted composition operators between weighted Bergman spaces in the unit ball of Nihonkai Math. J. 16 31-48
[8]  
Shapiro J.H.(2008)Essential norms of weighted composition operators between weighted Bergman spaces of the ball Acta Sci. Math. (Szeged) 74 827-841
[9]  
Stessin M.(1991)Duality of Bloch spaces and norm convergence of Taylor series Michigan Math. J. 38 89-101
[10]  
Zhu K.(2007)Compact composition operators on Bergman spaces of the unit ball Houston J. Math. 33 273-283