Mapping individual behavior in financial markets: synchronization and anticipation

被引:0
作者
Mario Gutiérrez-Roig
Javier Borge-Holthoefer
Alex Arenas
Josep Perelló
机构
[1] University of Warwick,Data Science Lab, Warwick Busniess School
[2] Universitat Oberta de Catalunya,Internet Interdisciplinary Institute (IN3)
[3] Universitat Rovira i Virgili,Departament d’Enginyeria Informàtica i Matemàtiques
[4] Universitat de Barcelona,Departament de Física de la Matèria Condensada
[5] Universitat de Barcelona,Institute of Complex Systems UBICS
来源
EPJ Data Science | / 8卷
关键词
Financial markets; Behavioral economics; Transfer of entropy; Mutual information; Networks;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we develop a methodology, based on Mutual Information and Transfer of Entropy, that allows to identify, quantify and map on a network the synchronization and anticipation relationships between financial traders. We apply this methodology to a dataset containing 410,612\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$410\text{,}612$\end{document} real buy and sell operations, made by 566 non-professional investors from a private investment firm on 8 different assets from the Spanish IBEX market during a period of time from 2000 to 2008. These networks present a peculiar topology significantly different from the random networks. We seek alternative features based on human behavior that might explain part of those 12,158\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$12\text{,}158$\end{document} synchronization links and 1031 anticipation links. Thus, we detect that daily synchronization with price (present in 64.90% of investors) and the one-day delay with respect to price (present in 4.38% of investors) play a significant role in the network structure. We find that individuals reaction to daily price changes explains around 20% of the links in the Synchronization Network, and has significant effects on the Anticipation Network. Finally, we show how using these networks we substantially improve the prediction accuracy when Random Forest models are used to nowcast and predict the activity of individual investors.
引用
收藏
相关论文
共 147 条
[1]  
King G(2011)Ensuring the data-rich future of the social sciences Science 331 719-721
[2]  
González-Bailón S(2013)Broadcasters and hidden influentials in online protest diffusion Am Behav Sci 57 943-965
[3]  
Borge-Holthoefer J(2013)Crises and collective socio-economic phenomena: simple models and challenges J Stat Phys 151 567-606
[4]  
Moreno Y(2002)A microsimulation of traders activity in the stock market: the role of heterogeneity, agents’ interactions and trade frictions J Econ Behav Organ 49 269-285
[5]  
Bouchaud JP(2009)The impact of heterogeneous trading rules on the limit order book and order flows J Econ Dyn Control 33 525-537
[6]  
Iori G(2012)Herding effects in order driven markets: the rise and fall of gurus J Econ Behav Organ 81 82-96
[7]  
Chiarella C(2009)The economy needs agent-based modelling Nature 460 685-686
[8]  
Iori G(2008)An empirical behavioral model of liquidity and volatility J Econ Dyn Control 32 200-234
[9]  
Perelló J(2010)Turnover, account value and diversification of real traders: evidence of collective portfolio optimizing behavior New J Phys 12 207-211
[10]  
Tedeschi G(2008)Model for interevent times with long tails and multifractality in human communications: an application to financial trading Phys Rev E 78 176-190