On Solvability of the Boundary-Value Problem for (p,q)-Nonlinear Elliptic and Parabolic Equations

被引:0
作者
I. V. Nezhinskaya
机构
关键词
Elliptic Equation; Parabolic Equation; Dirichlet Problem; Special Class; Global Solution;
D O I
10.1023/B:JOTH.0000046212.15553.8e
中图分类号
学科分类号
摘要
A class of nonuniform (p, q)-nonlinear elliptic equations is considered. The existence of a classical global solution to the Dirichlet problem is established for some parameters p and q characterizing the growth with respect to the gradient of a solution. The result is generalized to a special class of (p, q)-nonlinear parabolic equations. Bibliography: 14 titles.
引用
收藏
页码:5001 / 5017
页数:16
相关论文
共 12 条
[1]  
Serrin J.(1969)The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables Philos. Trans. R. Soc. Lond., Ser. 264 413-496
[2]  
Ivanov A. V.(1971)On the Dirichlet problem for quasilinear nonuniformly elliptic equations of the second order Tr. MIAN 116 34-54
[3]  
Lieberman G. M.(1994)Gradient Estimates for a New Class of Degenerate Elliptic and Parabolic Equations Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 21 497-522
[4]  
Marcellini P.(1991)Regularity and existence of solutions of elliptic equations with p,q growth conditions J. Differ. Equations 90 1-30
[5]  
Coscia A.(1999)H¨older continuity of the gradient of p(x)-harmonic mappings C. R. Acad. Sci., Paris, Ser. I, Math. 328 363-368
[6]  
Mingione G.(2001)Regularity results for a class of functionals with non-standard growth Arch. Ration. Mech. Anal. 156 121-140
[7]  
Acerbi E.(2004)Regularity results for parabolic systems related to a class of non-Newtonian fluids An. I. H. Poincare 21 25-60
[8]  
Mingione G.(2004)Boundary estimate for the gradient of a solution to the dirichlet problem for Probl. Mat. Anal. 27 137-150
[9]  
Acerbi E.(undefined)p q)-nonlinear equations undefined undefined undefined-undefined
[10]  
Mingione G.(undefined)undefined undefined undefined undefined-undefined