Singularly perturbed convection-diffusion boundary value problems with two small parameters using nonpolynomial spline technique

被引:0
作者
Pooja Khandelwal
Arshad Khan
机构
[1] Jamia Millia Islamia,Department of Mathematics
来源
Mathematical Sciences | 2017年 / 11卷
关键词
Singular perturbation; Nonpolynomial cubic spline; Convergence analysis; Boundary value problem; Convection-diffusion;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new nonpolynomial cubic spline method is developed for solving two-parameter singularly perturbed boundary value problems. Convergence analysis is briefly discussed. Numerical examples and computational results illustrate and guarantee a higher accuracy by this technique. Comparisons are made to confirm the reliability and accuracy of the proposed technique.
引用
收藏
页码:119 / 126
页数:7
相关论文
共 32 条
[1]  
Aziz T(2002)A spline method for second-order singularly perturbed boundary-value problems J. Comput. Appl. Math. 147 445-452
[2]  
Khan A(2006)A parameter robust second order numerical method for a singularly perturbed two-parameter problem Appl. Numer. Math. 56 962-980
[3]  
Gracia JL(2008)B-spline collocation method for a two-parameter singularly perturbed convection-diffusion boundary value problems Appl. Math. Comput. 201 504-513
[4]  
O’Riordan E(2012)Exponentially fitted cubic spline for two-parameter singularly perturbed boundary value problems Int. J. Comput. Math. 89 836-850
[5]  
Pickett ML(2006)Sextic spline solution of singularly perturbed boundary value problem Appl. Math. Comput. 181 432-439
[6]  
Kadalbajoo MK(2014)Non-polynomial sextic spline solution of singularly perturbed boundary-value problems Int. J. Comput. Math. 19 1122-1135
[7]  
Yadaw AS(2013)A parameter-uniform method for two parameter singularly perturbed boundary value problems via asymptotic expansion Appl. Math. Inf. Sci. 7 1525-1532
[8]  
Kadalbajoo MK(2004)Analysis of a finite-difference scheme for a singularly perturbed problem with two small parameters J. Math. Anal. Appl. 289 355-366
[9]  
Jha A(2009)B-spline solution of a singularly perturbed boundary value problem arising in biology Chaos Solitons Fractals 42 2934-2948
[10]  
Khan A(1967)Two parameter singular perturbation problems for second order equations J. Math. Mech. 16 1143-1164