Approximate Solutions of Variational Inequalities on Sets of Common Fixed Points of a One-Parameter Semigroup of Nonexpansive Mappings

被引:0
|
作者
L. C. Ceng
S. Schaible
J. C. Yao
机构
[1] Shanghai Normal University,Department of Mathematics
[2] and Scientific Computing Key Laboratory of Shanghai Universities,Department of Applied Mathematics
[3] Chung Yuan Christian University,Department of Applied Mathematics
[4] National Sun Yat-sen University,undefined
关键词
Viscosity approximation methods; Fixed-point problems; Variational inequalities; Nonexpansive mappings; Strong convergence; Reflexive and strictly convex Banach spaces; Uniformly Gâteaux differentiable norms;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}$\end{document} be a one-parameter semigroup of nonexpansive mappings on a nonempty closed convex subset C of a strictly convex and reflexive Banach space X. Suppose additionally that X has a uniformly Gâteaux differentiable norm, C has normal structure, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}$\end{document} has a common fixed point. Then it is proved that, under appropriate conditions on nonexpansive semigroups and iterative parameters, the approximate solutions obtained by the implicit and explicit viscosity iterative processes converge strongly to the same common fixed point of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}$\end{document}, which is a solution of a certain variational inequality.
引用
收藏
页码:245 / 263
页数:18
相关论文
共 50 条