Hopf bifurcation of a delayed diffusive predator-prey model with strong Allee effect

被引:0
|
作者
Jia Liu
Xuebing Zhang
机构
[1] Huaian Vocational College of Information Technology,
来源
Advances in Difference Equations | / 2017卷
关键词
predator-prey model; Allee effect; stability; Hopf bifurcation; delay; 34C23; 34D23;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is concerned with a delayed diffusive predator-prey system where the growth of prey population is governed by Allee effect and the predator population consumes the prey according to Beddington-DeAngelis type functional response. The situation of bi-stability and the existence of two coexisting equilibria for the proposed model system are addressed. The stability of the steady state together with its dependence on the magnitude of time delay has been obtained. The conditions that guarantee the occurrence of the Hopf bifurcation in presence of delay are demonstrated. Furthermore, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem. Finally, some numerical simulations have been carried out in order to validate the assumptions of the model.
引用
收藏
相关论文
共 50 条
  • [1] Hopf bifurcation of a delayed diffusive predator-prey model with strong Allee effect
    Liu, Jia
    Zhang, Xuebing
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [2] Stability Analysis and Hopf Bifurcation of a Delayed Diffusive Predator-Prey Model with a Strong Allee Effect on the Prey and the Effect of Fear on the Predator
    Xie, Yining
    Zhao, Jing
    Yang, Ruizhi
    MATHEMATICS, 2023, 11 (09)
  • [3] Hopf bifurcation of a delayed predator-prey model with Allee effect and anti-predator behavior
    Xu, Xinyue
    Meng, Yan
    Shao, Yangyang
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2023, 16 (07)
  • [4] Global Hopf bifurcation and positive periodic solutions of a delayed diffusive predator-prey model with weak Allee effect for predator
    Zhang, Xiaohui
    Xu, Xiaofeng
    Liu, Ming
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2025, 2025 (01):
  • [5] Hopf-Hopf bifurcation and chaotic attractors in a delayed diffusive predator-prey model with fear effect
    Duan, Daifeng
    Niu, Ben
    Wei, Junjie
    CHAOS SOLITONS & FRACTALS, 2019, 123 : 206 - 216
  • [6] Hopf bifurcation in a delayed reaction diffusion predator-prey model with weak Allee effect on prey and fear effect on predator
    Wang, Fatao
    Yang, Ruizhi
    Xie, Yining
    Zhao, Jing
    AIMS MATHEMATICS, 2023, 8 (08): : 17719 - 17743
  • [7] Double Hopf bifurcation of a diffusive predator-prey system with strong Allee effect and two delays
    Liu, Yuying
    Wei, Junjie
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (01): : 72 - 92
  • [8] Bifurcation Analysis in a Predator-Prey Model with an Allee Effect and a Delayed Mechanism
    Li, Danyang
    Liu, Hua
    Zhang, Haotian
    Ma, Ming
    Ye, Yong
    Wei, Yumei
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (03) : 1415 - 1438
  • [9] Bifurcation Analysis in a Predator-Prey Model with an Allee Effect and a Delayed Mechanism
    Danyang Li
    Hua Liu
    Haotian Zhang
    Ming Ma
    Yong Ye
    Yumei Wei
    Acta Mathematica Scientia, 2023, 43 : 1415 - 1438
  • [10] HOPF BIFURCATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH HERD BEHAVIOR AND PREY HARVESTING
    Jiang, Heping
    Tang, Xiaosong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (02): : 671 - 690