Anderson Localization for Random Schrödinger Operators with Long Range Interactions

被引:0
作者
Werner Kirsch
Peter Stollmann
Günter Stolz
机构
[1] Institut für Mathematik,
[2] Ruhr-Universität Bochum,undefined
[3] D-44780 Bochum,undefined
[4] Germany.¶E-mail: werner@mathphys.ruhr-uni-bochum.de,undefined
[5] Fachbereich Mathematik,undefined
[6] Johann Wolfgang Goethe-Universität,undefined
[7] D-60054 Frankfurt am Main,undefined
[8] Germany.¶E-mail: stollman@math.uni-frankfurt.de,undefined
[9] University of Alabama at Birmingham,undefined
[10] Department of Mathematics,undefined
[11] Birmingham,undefined
[12] Alabama 35294,undefined
[13] USA.¶E-mail: stolz@math.uab.edu,undefined
来源
Communications in Mathematical Physics | 1998年 / 195卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove pure point spectrum with exponentially decaying eigenfunctions at all band edges for Schrödinger Operators with a periodic potential plus a random potential of the form Vw(x) = Σqi(w)f(x - i), where $f$ decays at infinity like |x|−m for m>4d resp. $m>3d depending on the regularity of f. The random variables qi are supposed to be independent and identically distributed. We assume that their distribution has a bounded density of compact support.
引用
收藏
页码:495 / 507
页数:12
相关论文
empty
未找到相关数据