Toeplitz Operators on Generalized Bergman Spaces

被引:0
|
作者
Kamthorn Chailuek
Brian C. Hall
机构
[1] Prince of Songkla University,Department of Mathematics
[2] University of Notre Dame,Department of Mathematics
来源
关键词
Primary 47B35; Secondary 32A36; 81S10; Bergman space; Toeplitz operator; quantization; holomorphic Sobolev space; Berezin transform;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the weighted Bergman spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}L^{2}(\mathbb {B}^{d}, \mu_{\lambda})}$$\end{document}, where we set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d\mu_{\lambda}(z) = c_{\lambda}(1-|z|^2)^{\lambda} d\tau(z)}$$\end{document}, with τ being the hyperbolic volume measure. These spaces are nonzero if and only if λ > d. For 0 < λ ≤ d, spaces with the same formula for the reproducing kernel can be defined using a Sobolev-type norm. We define Toeplitz operators on these generalized Bergman spaces and investigate their properties. Specifically, we describe classes of symbols for which the corresponding Toeplitz operators can be defined as bounded operators or as a Hilbert–Schmidt operators on the generalized Bergman spaces.
引用
收藏
页码:53 / 77
页数:24
相关论文
共 50 条