The Unsteady Free Convection Boundary-Layer Flow Near a Stagnation Point in a Heat Generating Porous Medium with Modified Arrhenius Kinetics

被引:0
作者
J. H. Merkin
机构
[1] University of Leeds,Department of Applied Mathematics
来源
Transport in Porous Media | 2016年 / 113卷
关键词
Convective flow; Porous media; Stagnation-point flow; Local heat generation; Arrhenius kinetics;
D O I
暂无
中图分类号
学科分类号
摘要
The free convection boundary layer on an insulated wall formed by local internal heating through a modified form of Arrhenius kinetics is considered. It is shown to involve two dimensionless parameters, ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} the activation energy and q0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_0$$\end{document} the rate of local heating. Numerical solutions to the initial-value problem are obtained showing that, for relatively weak internal heating (small q0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_0$$\end{document}), a nontrivial flow arises at large times, whereas for larger local heating the solution becomes singular at a finite time. This behaviour is also seen to depend on the size of the initial input. The corresponding steady states, being the possible large time solutions to the initial-value problem, are also treated. These show the existence of a critical value q0,crit\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_{0,\mathrm{{crit}}}$$\end{document} of q0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_0$$\end{document}, dependent on ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}. These critical values determined numerically showing that there was a finite region of the ϵ∼q0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon {\sim }q_0$$\end{document} parameter plane over which steady states cannot be found. Asymptotic forms for both ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} and q0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_0$$\end{document} being small and large are derived.
引用
收藏
页码:159 / 171
页数:12
相关论文
共 51 条
  • [1] Bagai S(2003)Similarity solutions of free convection boundary layers over a body of arbitrary shape in a porous medium with internal heat generation Int. Commun. Heat Mass Transf. 30 997-1003
  • [2] Brooks K(1988)Effect of natural convection on spontaneous combustion of coal stockpiles AIChE J. 34 353-365
  • [3] Balakotaiah V(1986)A simplified model of spontaneous combustion in coal stockpiles FUEL 65 1035-1041
  • [4] Luss D(2002)Wetting-induced ignition in cellulosic materials Fire Saf. J. 37 465-479
  • [5] Brooks K(1990)The ignition of hygroscopic organic materials Combust. Flame 79 2-6
  • [6] Glasser D(2006)Exponentially decaying boundary layers as limiting cases of families of algebraically decaying ones Z. Angew. Math. Phys. 57 777-792
  • [7] Gray BF(2007)Effect of the source term on steady free convection boundary layer flow over an vertical plate in a porous medium. Part I Transp. Porous Mediua 67 49-67
  • [8] Sexton MJ(2007)Effect of the source term on steady free convection boundary layer flow over an vertical plate in a porous medium. Part II Transp. Porous Media 67 189-201
  • [9] Halliburton B(2009)Linear stability analysis of the steady thermal regimes of a packed bed reactor with an organised structure Int. J. Therm. Sci. 48 1523-1529
  • [10] Macaskill C(2008)Free convection boundary layers on a vertical surface in a heat-generating porous medium IMA J. Appl. Math. 73 231-253