Gaussian quadrature rules with exponential weights on (−1, 1)

被引:0
|
作者
M. C. De Bonis
G. Mastroianni
I. Notarangelo
机构
[1] University of Basilicata,Department of Mathematics and Computer Sciences
来源
Numerische Mathematik | 2012年 / 120卷
关键词
65D30; 65D32; 41A05; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
We study the behavior of some “truncated” Gaussian rules based on the zeros of Pollaczek-type polynomials. These formulas are stable and converge with the order of the best polynomial approximation in suitable function spaces. Moreover, we apply these results to the related Lagrange interpolation process and to prove the stability and the convergence of a Nyström method for Fredholm integral equations of the second kind. Finally, some numerical examples are shown.
引用
收藏
页码:433 / 464
页数:31
相关论文
共 50 条
  • [41] Szego polynomials: Quadrature rules on the unit circle and on [-1,1]
    Bressan, R
    Menegasso, SF
    Ranga, A
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2003, 33 (02) : 567 - 584
  • [42] Polynomial inequalities and embedding theorems with exponential weights on (-1,1)
    Notarangelo, I.
    ACTA MATHEMATICA HUNGARICA, 2012, 134 (03) : 286 - 306
  • [43] Some error expansions for certain Gaussian quadrature rules
    Smith, HV
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (02) : 331 - 337
  • [44] The Weighted Lebesgue Constant of Lagrange Interpolation for Exponential Weights on [-1, 1]
    S. B. Damelin
    Acta Mathematica Hungarica, 1998, 81 : 223 - 240
  • [45] Mean convergence of Lagrange interpolation for exponential weights on [-1,1]
    Lubinsky, DS
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (06): : 1273 - 1297
  • [46] Polynomial inequalities and embedding theorems with exponential weights on (−1,1)
    I. Notarangelo
    Acta Mathematica Hungarica, 2012, 134 : 286 - 306
  • [47] Gaussian-type quadrature rules for Muntz systems
    Milovanovic, GV
    Cvetkovic, AS
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (03): : 893 - 913
  • [48] CHRISTOFFEL FUNCTIONS AND ORTHOGONAL POLYNOMIALS FOR EXPONENTIAL WEIGHTS ON [-1,1]
    LEVIN, AL
    LUBINSKY, DS
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 111 (535) : R3 - +
  • [49] NEW QUADRATURE RULES FOR BERNSTEIN MEASURES ON THE INTERVAL [-1,1]
    Berriochoa, Elias
    Cachafeiro, Alicia
    Garcia-Amor, Jose M.
    Marcellan, Francisco
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 30 : 278 - 290
  • [50] Explicit Gaussian Quadrature Rules for C1 Cubic Splines with Non-uniform Knot Sequences
    Chen, Peng
    Li, Xin
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2021, 9 (03) : 331 - 345