Gaussian quadrature rules with exponential weights on (−1, 1)

被引:0
|
作者
M. C. De Bonis
G. Mastroianni
I. Notarangelo
机构
[1] University of Basilicata,Department of Mathematics and Computer Sciences
来源
Numerische Mathematik | 2012年 / 120卷
关键词
65D30; 65D32; 41A05; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
We study the behavior of some “truncated” Gaussian rules based on the zeros of Pollaczek-type polynomials. These formulas are stable and converge with the order of the best polynomial approximation in suitable function spaces. Moreover, we apply these results to the related Lagrange interpolation process and to prove the stability and the convergence of a Nyström method for Fredholm integral equations of the second kind. Finally, some numerical examples are shown.
引用
收藏
页码:433 / 464
页数:31
相关论文
共 50 条
  • [21] Gaussian quadrature rules using function derivatives
    Milovanovic, Gradimir V.
    Cvetkovic, Aleksandar S.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (01) : 358 - 377
  • [22] The set of anti-Gaussian quadrature rules for the optimal set of quadrature rules in Borges' sense
    Petrovic, Nevena Z.
    Pranic, Miroslav S.
    Stanic, Marija P.
    Mladenovic, Tatjana V. Tomovic
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 442
  • [23] ABSCISSAS AND WEIGHTS FOR GREGORY QUADRATURE (D1)
    WELSCH, JH
    COMMUNICATIONS OF THE ACM, 1966, 9 (04) : 271 - &
  • [24] New quadrature rules for Bernstein measures on the interval [-1, 1]
    Berriochoa, Elías
    Cachafeiro, Alicia
    García-Amor, José M.
    Marcellán, Francisco
    Electronic Transactions on Numerical Analysis, 2008, 30 : 278 - 290
  • [25] Explicit Gaussian quadrature rules for C1 cubic splines with symmetrically stretched knot sequences
    Ait-Haddou, Rachid
    Barton, Michael
    Calo, Victor Manuel
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 : 543 - 552
  • [26] COMPUTATION OF NODES AND WEIGHTS OF EXTENDED GAUSSIAN RULES
    DAGNINO, C
    FIORENTINO, C
    COMPUTING, 1984, 32 (03) : 271 - 278
  • [27] Exponential Quadrature Rules for Linear Fractional Differential Equations
    Garrappa, Roberto
    Popolizio, Marina
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (01) : 219 - 244
  • [28] Exponential Quadrature Rules for Linear Fractional Differential Equations
    Roberto Garrappa
    Marina Popolizio
    Mediterranean Journal of Mathematics, 2015, 12 : 219 - 244
  • [29] POSITIVITY OF WEIGHTS OF EXTENDED GAUSS-LEGENDRE QUADRATURE RULES
    MONEGATO, G
    MATHEMATICS OF COMPUTATION, 1978, 32 (141) : 243 - 245
  • [30] GAUSSIAN QUADRATURE RULES FOR COMPOSITE HIGHLY OSCILLATORY INTEGRALS
    Wu, Menghan
    Wang, Haiyong
    MATHEMATICS OF COMPUTATION, 2023, : 729 - 746