Gaussian quadrature rules with exponential weights on (−1, 1)
被引:0
|
作者:
M. C. De Bonis
论文数: 0引用数: 0
h-index: 0
机构:University of Basilicata,Department of Mathematics and Computer Sciences
M. C. De Bonis
G. Mastroianni
论文数: 0引用数: 0
h-index: 0
机构:University of Basilicata,Department of Mathematics and Computer Sciences
G. Mastroianni
I. Notarangelo
论文数: 0引用数: 0
h-index: 0
机构:University of Basilicata,Department of Mathematics and Computer Sciences
I. Notarangelo
机构:
[1] University of Basilicata,Department of Mathematics and Computer Sciences
来源:
Numerische Mathematik
|
2012年
/
120卷
关键词:
65D30;
65D32;
41A05;
65R20;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study the behavior of some “truncated” Gaussian rules based on the zeros of Pollaczek-type polynomials. These formulas are stable and converge with the order of the best polynomial approximation in suitable function spaces. Moreover, we apply these results to the related Lagrange interpolation process and to prove the stability and the convergence of a Nyström method for Fredholm integral equations of the second kind. Finally, some numerical examples are shown.