Numerical simulation of inorganic Cs2AgBiBr6 as a lead-free perovskite using device simulation SCAPS-1D

被引:0
作者
Aminreza Mohandes
Mahmood Moradi
Hamid Nadgaran
机构
[1] Shiraz University,Department of Physics, College of Science
来源
Optical and Quantum Electronics | 2021年 / 53卷
关键词
Cs; AgBiBr; Double perovskite solar cell; Lead-free perovskite; Conduction band offset (CBO); Valence band offset (VBO); SCAPS;
D O I
暂无
中图分类号
学科分类号
摘要
Double perovskite, Cs2AgBiBr6, is introduced as a lead-free perovskite solar cell. Device modeling of Cs2AgBiBr6 (DP) was accomplished to obtain the optimum parameters using the Solar Cell Capacitance Simulator (SCAPS). Two devices with two different hole transport layers (HTLs) were investigated, including P3HT and Cu2O. For both devices with different HTLs, an optimal thicknesses of 1200 nm and defect densities of 1.0×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.0\times$$\end{document} 1014 cm−3 for DP layer were attained. For both HTLs, conduction band offset, CBO, is − 0.21 eV and valence band offset, VBO, is + 0.16 eV. For shallow acceptor doping concentration of P3HT and Cu2O, the values of 5.0×1019\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.0\times {10}^{19}$$\end{document} and 5.0×1017cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.0\times {10}^{17}\,{\mathrm{cm}}^{-3}$$\end{document} were obtained, respectively. As far as the shallow donor density of electron transport layers (ETLs) is concerned, for both cases, the optimum value of 5.0×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.0\times$$\end{document} 1019 cm−3 were achieved. For capture cross section,σn,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p}$$\end{document}, in absorber layer for both HTLs, the optimal value at σn,pof10-20cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-20}\, {\mathrm{cm}}^{2}$$\end{document} for Nt,DP(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP} ($$\end{document}defect density of DP) is1016cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{is} {10}^{16} \,{\mathrm{cm}}^{-3}$$\end{document}, at σn,pof10-19cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-19} \,{\mathrm{cm}}^{2}$$\end{document} for Nt,DPis1015cm-3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP}\mathrm{ is} {10}^{15} \,{\mathrm{cm}}^{-3},$$\end{document} at σn,pof10-18cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-18} \,{\mathrm{cm}}^{2}$$\end{document} forNt,DPis1014cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP}\mathrm{ is} {10}^{14} \,{\mathrm{cm}}^{-3}$$\end{document}, at σn,pof10-17cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-17}\, {\mathrm{cm}}^{2}$$\end{document} forNt,DPis1013cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP}\mathrm{ is} {10}^{13}\, {\mathrm{cm}}^{-3}$$\end{document}, and at σn,pof10-16cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-16} \,{\mathrm{cm}}^{2}$$\end{document} forNt,DPis1012cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP}\mathrm{ is} {10}^{12} \,{\mathrm{cm}}^{-3}$$\end{document}. For P3HT device, the interface defect density of P3HT/Cs2AgBiBr6 is occurred at 1.0 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 1014 cm−2, and for Cs2AgBiBr6/SnO2 is happened at 1.0 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 109 cm−2. For Cu2O device, the interface defect density of Cu2O/Cs2AgBiBr6 is befallen at 1.0 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 1013 cm−2, and for Cs2AgBiBr6/SnO2 is happened at 1.0 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 1010 cm−2. As for radiative recombination, for P3HT device, the optimal value is happened at 2.3 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 10−13 cm3/s, however, for Cu2O device is occurred at 2.3 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 10−12 cm3/s. Finally, for P3HT device, a maximum power conversion efficiency, PCE, of 11.69% (open-circuit voltage, Voc, of 2.02 V, short-circuit current density, Jsc, of 6.39 mA/cm2, and fill-factor, FF, of 0.90 (90%)) were achieved, and for Cu2O device, a PCE of 11.32% (Voc of 1.97 V, Jsc of 6.39 mA/cm2, and FF of 0.895 (89.5%)) were attained. This is the highest efficiency for Cs2AgBiBr6 double perovskite solar cell which was achieved till now. Finally, our results are providing towards fabricating a lead-free and inorganic solar cell.
引用
收藏
相关论文
共 477 条
  • [1] Ahmed S(2021)Numerical development of eco-friendly Cs<sub>2</sub>TiBr6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D Optik 225 165765-557
  • [2] Jannat F(2021)Shedding light on the effect of diethyl ether antisolvent on the growth of (CH JOM 73 551-532
  • [3] Khan MAK(2021)NH Mater. Chem. Phys. 258 123973-9255
  • [4] Alim MA(2020))PbI Energies 13 1643-570
  • [5] Bouich A(2000) thin films Thin Solid Films 361 527-107
  • [6] Marí B(2020)One-step synthesis of FA<sub>1</sub><sub>−</sub><sub>x</sub>GA<sub>x</sub>PbI<sub>3</sub> perovskites thin film with enhanced stability of alpha (α) phase J. Phys. Chem. C 124 9249-284
  • [7] Atourki L(2018)Electrically active defects in polycrystalline and single crystal metal halide perovskite Joule 2 558-8162
  • [8] Ullah S(2020)Modeling polycrystalline semiconductor solar cells Adv. Mater. 32 1902045-1240
  • [9] Touhami ME(2019)Synthesis and crystal structure evolution of co-evaporated Cs MNSMS 9 97-1210
  • [10] Bouich A(2020)AgBiBr6 thin films upon thermal treatment J. Mater. Chem. C 8 276-7