Normal Forms of Symplectic Matrices

被引:0
作者
Long Y. [1 ]
Dong D. [2 ]
机构
[1] Nankai Institute of Mathematics, Nankai University
[2] Department of Mathematics, SUNY at Stony Brook, Stony Brook
关键词
Eigenvalue; Normal form; Symplectic matrix; Symplectic transformation;
D O I
10.1007/s101140000048
中图分类号
学科分类号
摘要
In this paper, we prove that for every symplectic matrix M possessing eigenvalues on the unit circle, there exists a symplectic matrix P such that P-1MP is a symplectic matrix of the normal forms defined in this paper.
引用
收藏
页码:237 / 260
页数:23
相关论文
共 21 条
  • [1] Han J., Long Y., Normal Forms of Symplectic Matrices II, (1996)
  • [2] Dong D., Long Y., The iteration formula of the Maslov-type index theory with applications to nonlinear Hamiltonian systems, Trans Amer Math Soc, 349, pp. 2619-2661, (1997)
  • [3] Long Y., The structure of the singular symplectic matrix set, Science in China (Scientia Sinica), 5, pp. 457-465, (1991)
  • [4] Science in China (Scientia Sinica), 34, pp. 897-907, (1991)
  • [5] Long Y., The Index Theory of Hamiltonian Systems with Applications (in Chinese), (1993)
  • [6] Long Y., Periodic Points of Hamiltonian Diffeomorphisms on Tori and a Conjecture of C Conley, (1994)
  • [7] Long Y., The topological structures of ω-subsets of symplectic groups, Acta Math Sinica, English Series, 15, 2, pp. 255-268, (1999)
  • [8] Long Y., Bott formula of the Maslov-type index theory, Pacific J Math, 187, pp. 113-149, (1999)
  • [9] Long Y., A Maslov-type index theory for symplectic paths, Top Meth Nonl Anal, 10, pp. 47-78, (1997)
  • [10] Long Y., Multiple periodic points of the Poincaré map of Lagrangian systems on tori, Math Z, (1997)