Multiplicity of Solutions for a Nonlinear Klein-Gordon-Maxwell System

被引:0
作者
Xiaoming He
机构
[1] Minzu University of China,College of Sciences
来源
Acta Applicandae Mathematicae | 2014年 / 130卷
关键词
Klein-Gordon-Maxwell equation; Large energy solutions; Variational methods; 35J60; 35Q40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the nonlinear Klein-Gordon-Maxwell system \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left \{\begin{array}{l@{\quad}l} -\Delta u+V(x)u-(2\omega+\phi)\phi u=f(x,u),&x\in{\mathbb{R}}^3,\\ \Delta \phi=(\omega+\phi)u^2,&x\in{\mathbb{R}}^3. \end{array} \right . $$\end{document} By means of a variant fountain theorem and the symmetric mountain pass theorem, we obtain the existence of infinitely many large energy solutions.
引用
收藏
页码:237 / 250
页数:13
相关论文
共 33 条
  • [1] Azzollini A.(2011)Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system Proc. R. Soc. Edinb., Sect. A, Math. 141 449-463
  • [2] Pisani L.(2010)Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations Topol. Methods Nonlinear Anal. 35 33-42
  • [3] Pomponio A.(2010)On the Schrödinger-Maxwell equations under the effect of a general nonlinear term Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27 779-791
  • [4] Azzollini A.(1995)Existence and multiplicity results for superlinear elliptic problems on Commun. Partial Differ. Equ. 20 1725-1741
  • [5] Pomponio A.(2000)Multiple positive solutions for a nonlinear Schrödinger equation Z. Angew. Math. Phys. 51 366-384
  • [6] Azzollini A.(1998)An eigenvalue problem for the Schrödinger-Maxwell equations Topol. Methods Nonlinear Anal. 11 283-293
  • [7] d’Avenia P.(2001)The nonlinear Klein-Gordon equation coupled with the Maxwell equations Nonlinear Anal. 47 6065-6072
  • [8] Pomponio A.(2002)Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations Rev. Math. Phys. 14 409-420
  • [9] Bartsch T.(1983)A relation between pointwise convergence of functions and convergence of functionals Proc. Am. Math. Soc. 88 486-490
  • [10] Wang Z.-Q.(2011)Existence results for the Klein-Gordon-Maxwell equations in higher dimensions with critical exponents Commun. Pure Appl. Anal. 10 709-718