The Grothendieck property for injective tensor products of Banach spaces

被引:0
作者
Donghai Ji
Xiaoping Xue
Qingying Bu
机构
[1] Harbin University of Science and Technology,Department of Mathematics
[2] Harbin Institute of Technology,Department of Mathematics
[3] University of Mississippi,Department of Mathematics
来源
Czechoslovak Mathematical Journal | 2010年 / 60卷
关键词
Banach space; Grothendieck property; tensor product; 46B28; 46M05;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a Banach space with the Grothendieck property, Y a reflexive Banach space, and let X ⊗̌ɛY be the injective tensor product of X and Y. If either X** or Y has the approximation property and each continuous linear operator from X* to Y is compact, then X ⊗̌ɛY has the Grothendieck property.In addition, if Y has an unconditional finite dimensional decomposition, then X ⊗̌ɛY has the Grothendieck property if and only if each continuous linear operator from X* to Y is compact.
引用
收藏
页码:1153 / 1159
页数:6
相关论文
共 6 条
[1]  
Bu Q.(2005)The projective and injective tensor products of Lp[0, 1] and X being Grothendieck spaces Rocky Mt. J. Math. 35 713-726
[2]  
Emmanuele G.(1995)Polynomial Grothendieck properties Glasg. Math. J. 37 211-219
[3]  
González M.(1970)Schauder decompositions and completeness Bull. Lond. Math. Soc. 2 34-36
[4]  
Gutiérrez J. M.(1974)Spaces of compact operators Math. Ann. 208 267-278
[5]  
Kalton N. J.(undefined)undefined undefined undefined undefined-undefined
[6]  
Kalton N. J.(undefined)undefined undefined undefined undefined-undefined