Reverse Optical Flow for Self-Supervised Adaptive Autonomous Robot Navigation

被引:0
作者
A. Lookingbill
J. Rogers
D. Lieb
J. Curry
S. Thrun
机构
[1] Stanford University,Stanford Artificial Intelligence Laboratory
来源
International Journal of Computer Vision | 2007年 / 74卷
关键词
off-road navigation; terrain classification; optical flow; mobile robots; computer vision;
D O I
暂无
中图分类号
学科分类号
摘要
Autonomous mobile robot navigation, either off-road or on ill-structured roads, presents unique challenges for machine perception. A successful terrain or roadway classifier must be able to learn in a self-supervised manner and adapt to inter- and intra-run changes in the local environment.
引用
收藏
页码:287 / 302
页数:15
相关论文
共 28 条
[1]  
Berthod M.(1996)Bayesian image classification using markov random fields Image and Vision Computing 14 285-295
[2]  
Kato Z.(2004)Visual terrain mapping for traversable path planning of mobile robots Proceedings of SPIE 5608 118-127
[3]  
Yu S.(1998)Real-time obstacle avoidance using central flow divergence, and peripheral flow IEEE Trans. on Robotics and Automation 14 49-59
[4]  
Zerubia J.(2002)Vision for mobile robot navigation: A survey IEEE Transactions on Pattern Analysis and Machine Intelligence 24 237-267
[5]  
Chirkhodaie A.(1998)The use of optical flow for road navigation IEEE Trans. on Robotics and Automation 14 34-48
[6]  
Amrani R.(2003)Road lane segmentation using dynamic programming for active safety vehicles Elsevier Pattern Recognition Letters 24 3177-3185
[7]  
Coombs D.(2005)Obstacle detection and terrain classification for autonomous off-road navigation Auton. Robots 18 81-102
[8]  
Herman M.(2000)Using real-time stereo vision for mobile robot navigation Autonomous Robots 8 161-171
[9]  
Hong T.(1998)Overview of the demo III UGV program Proc. of the SPIE Robotic and Semi-Robotic Ground Vehicle Technology 3366 202-211
[10]  
Nashman M.(1977)Error measures for scene segmentation Pattern Recognition 9 217-231