Diffeomorphism-invariant properties for quasi-linear elliptic operators

被引:0
作者
Viviana Solferino
Marco Squassina
机构
[1] Università della Calabria,Dipartimento di Matematica
[2] Università degli Studi di Verona,Dipartimento di Informatica
来源
Journal of Fixed Point Theory and Applications | 2012年 / 11卷
关键词
35D99; 35J62; 58E05; 35J70; Quasi-linear equations; generalized solutions; invariance under diffeomorphism;
D O I
暂无
中图分类号
学科分类号
摘要
For quasi-linear elliptic equations we detect relevant properties which remain invariant under the action of a suitable class of diffeomorphisms. This yields a connection between existence theories for equations with degenerate and nondegenerate coerciveness.
引用
收藏
页码:137 / 157
页数:20
相关论文
共 48 条
  • [1] Alvino A.(2003)Existence results for nonlinear elliptic equations with degenerate coercivity Ann. Mat. Pura Appl. (4) 182 53-79
  • [2] Boccardo L.(1973)Dual variational methods in critical point theory and applications J. Funct. Anal. 14 349-381
  • [3] Ferone V.(1996)Critical points for multiple integrals of the calculus of variations Arch. Ration. Mech. Anal. 134 249-274
  • [4] Orsina L.(1999)Some remarks on critical point theory for nondifferentiable functionals NoDEA Nonlinear Differential Equations Appl. 6 79-100
  • [5] Trombetti G.(2001)Existence of critical points for some noncoercive functionals Ann. Inst. H. Poincaré Anal. Non Linéaire 18 437-457
  • [6] Ambrosetti A.(2003)Some remarks on a class of elliptic equations with degenerate coercivity Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 6 521-530
  • [7] Rabinowitz P. H.(1998)Existence and regularity results for some elliptic equations with degenerate coercivity Atti Sem. Mat. Fis. Univ. Modena 46 51-81
  • [8] Arcoya D.(1982)Existence de solutions non bornées pour certaines équations quasi-linéaires Port. Math. 41 507-534
  • [9] Boccardo L.(1997)Existence and regularity of minima for integral functionals noncoercive in the energy space Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 25 95-130
  • [10] Arcoya D.(1995)Multiplicity of solutions for quasilinear elliptic equations Topol. Methods Nonlinear Anal 6 357-370