On-line Chain Partitioning of Up-growing Interval Orders

被引:0
作者
Patrick Baier
Bartłomiej Bosek
Piotr Micek
机构
[1] Institut für Mathematik Technische Universität Berlin,AG Diskrete Mathematik
[2] Jagiellonian University,Algorithmics Research Group, Faculty of Mathematics and Computer Science
来源
Order | 2007年 / 24卷
关键词
On-line; Chain partitioning; Interval order;
D O I
暂无
中图分类号
学科分类号
摘要
On-line chain partitioning problem of on-line posets has been open for the past 20 years. The best known on-line algorithm uses \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{5^w-1}{4}$\end{document} chains to cover poset of width w. Felsner (Theor. Comput. Sci., 175(2):283–292, 1997) introduced a variant of this problem considering only up-growing posets, i.e. on-line posets in which each new point is maximal at the moment of its arrival. He presented an algorithm using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\left( {\begin{array}{*{20}c} {{w + 1}} \\ {2} \\ \end{array} } \right)}$\end{document} chains for width w posets and proved that his solution is optimal. In this paper, we study on-line chain partitioning of up-growing interval orders. We prove lower bound and upper bound to be 2w−1 for width w posets.
引用
收藏
页码:1 / 13
页数:12
相关论文
共 5 条
  • [1] Dilworth R.P.(1950)A decomposition theorem for partially ordered sets Ann. Math. 51 161-166
  • [2] Dilworth R.P.(1960)Some combinatorial problems on partially ordered sets Proc. Symp. Appl. Math. 10 85-90
  • [3] Felsner S.(1997)On-line chain partitions of orders Theor. Comput. Sci. 175 283-292
  • [4] Fishburn P.C.(1970)Intransitive indifference with unequal indifference intervals J. Math. Psychol. 7 144-149
  • [5] Kierstead H.A.(1981)An effective version of Dilworths theorem Trans. Am. Math. Soc. 268 63-77