Sharply k-Transitive Permutation Groups Viewed as Galois Groups

被引:0
作者
Mariángeles A. Gómez-Molleda
Joan-C. Lario
机构
[1] Universidad de Málaga,Departamento de Álgebra, Geometría y Topología
[2] Universitat Politècnica de Catalunya,Departament de Matemàtica Aplicada II
来源
Mediterranean Journal of Mathematics | 2011年 / 8卷
关键词
Galois Group; Permutation Group; Minimal Polynomial; Class Representative; Minimal System;
D O I
暂无
中图分类号
学科分类号
摘要
The classification of finite sharply k-transitive groups was achieved by the efforts of Jordan (1873), Dickson (1905), and Zassenhaus (1936). Likewise for other families of finite groups, one expects that they are realizable as Galois groups over the field of rational numbers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}$$\end{document}. In this article, we study some properties of the polynomials \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f \in \mathbb{Q}[x]}$$\end{document} such that the Galois group Gal(f) acts sharply k-transitively on its roots.
引用
收藏
页码:617 / 632
页数:15
相关论文
共 6 条
[1]  
Acciaro V.(1999)Computing Automorphisms of Abelian Number Fields Math. Comput. 68 1179-1186
[2]  
Klüners J.(2004)An efficient algorithm for the computation of automorphisms Math. Comp. 73 359-375
[3]  
Allombert B.(1982)Exact solution of linear equations using p-adic expansions Numer. Math. 40 137-141
[4]  
Dixon J.D.(1989)Problem 88-4 Mathematical Intelligencer 11 53-54
[5]  
Sigrist F.(1936)Über endliche Fastkörper Abh. Sem. Hamburg 11 187-220
[6]  
Zassenhaus H.(undefined)undefined undefined undefined undefined-undefined