Thermal decomposition of Prussian blue analogues in various gaseous media

被引:0
|
作者
D. P. Domonov
S. I. Pechenyuk
Yu. P. Semushina
机构
[1] «Kola Science Centre of the Russian Academy of Sciences » (ICT KSC RAS),Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre
来源
Journal of Thermal Analysis and Calorimetry | 2021年 / 146卷
关键词
Prussian blue analogues; Thermolysis; Argon; Hydrogen; Oxides;
D O I
暂无
中图分类号
学科分类号
摘要
Prussian blue analogues with formulae Ni3[Co(CN)6]2·16H2O(I), Cu3[Co(CN)6]2·17H2O(II), Ni3[Fe(CN)6]2·15H2O(III) and Cu3[Fe(CN)6]2·13H2O(IV) have been synthesized. The thermal decomposition of all complexes in oxidizing (air), reducing (hydrogen) and inert (argon) atmospheres was studied in the temperature range from 20 to 1000 °C. TG–DSC curves were obtained; analysis of solid thermolysis products was performed. It was established that the decomposition process of all the studied compounds in air ends up to 450–500 °C, and mass loss continues up to 1000 °C in argon. Solid products of thermolysis are oxides of central ions (NiO, CuO, Co3O4, Fe3O4) in air; mixtures of metals or Ni3Fe (III) in argon; Ni and Co (I) and Ni3Fe + Fe(III), and mixtures of Cu + Co (II) and Cu + Fe(IV) in hydrogen. Hexacyanocobaltates are reduced at lower temperatures and more fully than hexacyanoferrates under the same conditions.
引用
收藏
页码:629 / 635
页数:6
相关论文
共 50 条
  • [21] Energy storage materials derived from Prussian blue analogues
    Ma, Feng
    Li, Qing
    Wang, Tanyuan
    Zhang, Hanguang
    Wu, Gang
    SCIENCE BULLETIN, 2017, 62 (05) : 358 - 368
  • [22] Prussian Blue Analogues Cubes in the Organic Polymer Electrospun Fibres
    Pacanowska, A.
    Muniraju, N. K. Chogondahalli
    Sas, W.
    Perzanowski, M.
    Mitura-nowak, M.
    Fitta, M.
    ACTA PHYSICA POLONICA A, 2024, 145 (02) : 133 - 138
  • [23] Application of the infrared spectroscopy to the structural study of Prussian blue analogues
    Lejeune, Julien
    Brubach, Jean-Blaise
    Roy, Pascale
    Bleuzen, Anne
    COMPTES RENDUS CHIMIE, 2014, 17 (06) : 534 - 540
  • [24] Prussian Blue Analogues as Electrodes for Aqueous Monovalent Ion Batteries
    Qiu, Shen
    Xu, Yunkai
    Wu, Xianyong
    Ji, Xiulei
    ELECTROCHEMICAL ENERGY REVIEWS, 2022, 5 (02) : 242 - 262
  • [25] Recent advancements in Prussian blue analogues: Preparation and application in batteries
    Du, Guangyu
    Pang, Huan
    ENERGY STORAGE MATERIALS, 2021, 36 (36) : 387 - 408
  • [26] Energy storage materials derived from Prussian blue analogues
    Feng Ma
    Qing Li
    Tanyuan Wang
    Hanguang Zhang
    Gang Wu
    Science Bulletin, 2017, 62 (05) : 358 - 368
  • [27] Towards bottom-up nanopatterning of Prussian blue analogues
    Trannoy, Virgile
    Faustini, Marco
    Grosso, David
    Mazerat, Sandra
    Brisset, Francois
    Dazzi, Alexandre
    Bleuzen, Anne
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2014, 5 : 1933 - 1943
  • [28] Negative Thermal Expansion in Prussian Blue Analogue
    Gao, Qilong
    Liang, Erjun
    Xing, Xianran
    Chen, Jun
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (03): : 388 - 400
  • [29] Preparation of Various Prussian Blue Analogue Hollow Nanocubes with Single Crystalline Shells
    Hu, Ming
    Torad, Nagy L.
    Yamauchi, Yusuke
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2012, (30) : 4795 - 4799
  • [30] Structure and Properties of Prussian Blue Analogues in Energy Storage and Conversion Applications
    Yi, Haocong
    Qin, Runzhi
    Ding, Shouxiang
    Wang, Yuetao
    Li, Shunning
    Zhao, Qinghe
    Pan, Feng
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (06)