Limit cycles appearing after perturbation of certain multidimensional vector fields

被引:0
作者
Leszczyński P. [1 ]
Zoła̧dek H. [1 ]
机构
[1] Institute of Mathematics, University of Warsaw, 02-097 Warsaw
关键词
Limit cycles; Normal hyperbolicity; Poincaré-Pontriagin-Melnikov integral;
D O I
10.1023/A:1012858008962
中图分类号
学科分类号
摘要
Let an unperturbed multidimensional polynomial vector field have an invariant plane L and let the system restricted to this plane be Hamiltonian with a quadratic Hamilton function. Now take a polynomial perturbation of this system. The new system has an invariant surface close to L and the system restricted to it has a certain number of limit cycles. We strive to estimate this number. The linearization of this problem leads to estimation of the number of zeros of certain integral, which is a generalization of the abelian integral. We estimate this number of zeros by C1 + C2n, where n is the degree of the perturbation. © 2001 Plenum Publishing Corporation.
引用
收藏
页码:689 / 709
页数:20
相关论文
共 13 条
  • [1] Arnold V.I., Varchenko A.N., Gusein-Zade S.M., Singularities of Differentiable Mappings, Vol. 2. Monodromy and Asymptotic of Integrals, Monogr. Math., 83, (1988)
  • [2] Bateman H., Erdeleyi A., Higher Transcendental Functions, Vols. 1 and 2, 1-2, (1953)
  • [3] Golubev V.V., Lectures on Integration of Equations of Movement of a Rigid Body Around a Fixed Point, Gos. Izdat. Tekhn. Teor. Liter., (1953)
  • [4] Hirsch M., Pugh C., Shub M., Invariant Manifolds, Lect. Notes in Math., 583, (1977)
  • [5] Khovanskii A.G., Real analytic manifolds with the property of finiteness, and complex abelian integrals, Funct. Anal. Appl., 18, 2, pp. 40-50, (1984)
  • [6] Il'yashenko Yu.S., Yakovenko S.Yu., Double exponential estimate for the number of zeros of complete abelian integrals, Invent. Math., 121, pp. 613-650, (1995)
  • [7] Il'yashenko Yu.S., Yakovenko S.Yu., Counting real zeros of analytic functions satisfying linear ordinary differential equations, J. Diff. Eq., 126, pp. 87-105, (1996)
  • [8] Nitecki Z., Differentiable Dynamics, (1971)
  • [9] Novikov D., Yakovenko S., Simple exponential estimate for the number of zeros of complete abelian integrals, C. R. Acad. Sci. Paris I, 320, pp. 853-858, (1995)
  • [10] Petrov G.S., The Chebyshev property of elliptic integrals, Funct. Anal. Appl., 22, 1, pp. 72-73, (1988)