Real-time Korean voice phishing detection based on machine learning approaches

被引:0
|
作者
Minyoung Lee
Eunil Park
机构
[1] Sungkyunkwan University,Department of Applied Artificial Intelligence
来源
Journal of Ambient Intelligence and Humanized Computing | 2023年 / 14卷
关键词
Voice phishing; Vishing; Spam detection; Machine learning; Natural language processing;
D O I
暂无
中图分类号
学科分类号
摘要
Voice phishing, or vishing, is a phishing phone call in which an attacker lures receivers into providing personal their information. Damage from vishing is a serious problem worldwide and is increasing in frequency. Therefore, this study is aimed at detecting vishing in real time. Owing to the absence of research on spam detection using low-resource languages, we detect vishing in the Korean language using basic machine-learning models. We collected actual vishing damage data and converted the voice files into text to achieve spam detection using natural language processing techniques. The focus is on determining whether vishing can be rapidly detected, rather than model development. Based on the results, we suggest that vishing can be detected in real time and requires only a short training time when using machine learning models.
引用
收藏
页码:8173 / 8184
页数:11
相关论文
共 50 条
  • [1] Real-time Korean voice phishing detection based on machine learning approaches
    Lee, Minyoung
    Park, Eunil
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (7) : 8173 - 8184
  • [2] A novel approach for phishing URLs detection using lexical based machine learning in a real-time environment
    Gupta, Brij B.
    Yadav, Krishna
    Razzak, Imran
    Psannis, Konstantinos
    Castiglione, Arcangelo
    Chang, Xiaojun
    COMPUTER COMMUNICATIONS, 2021, 175 : 47 - 57
  • [3] Practical real-time intrusion detection using machine learning approaches
    Sangkatsanee, Phurivit
    Wattanapongsakorn, Naruemon
    Charnsripinyo, Chalermpol
    COMPUTER COMMUNICATIONS, 2011, 34 (18) : 2227 - 2235
  • [4] Comparative Analysis of Features Based Machine Learning Approaches for Phishing Detection
    Jain, Ankit Kumar
    Gupta, B. B.
    PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, 2016, : 2125 - 2130
  • [5] Machine learning for real-time remote detection
    Labbe, Benjamin
    Fournier, Jerome
    Henaff, Gilles
    Bascle, Benedicte
    Canu, Stephane
    OPTICS AND PHOTONICS FOR COUNTERTERRORISM AND CRIME FIGHTING VI AND OPTICAL MATERIALS IN DEFENCE SYSTEMS TECHNOLOGY VII, 2010, 7838
  • [6] A Real-time Automatic Detection of Phishing URLs
    Zhang, Jianyi
    Wang, Yonghao
    PROCEEDINGS OF 2012 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2012), 2012, : 1212 - 1216
  • [7] Smart Manufacturing Real-Time Analysis Based on Blockchain and Machine Learning Approaches
    Shahbazi, Zeinab
    Byun, Yung-Cheol
    APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [8] A REAL-TIME SHEEP COUNTING DETECTION SYSTEM BASED ON MACHINE LEARNING
    Deng, Xuefeng
    Zhang, Song
    Shao, Yi
    Yan, Xiaoli
    INMATEH-AGRICULTURAL ENGINEERING, 2022, 67 (02): : 85 - 94
  • [9] Machine Learning Based Real-Time Activity Detection System Design
    Eren, Kazim Kivanc
    Kucuk, Kerem
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2017, : 462 - 467
  • [10] Real-time detection system for smartphone zombie based on machine learning
    Wada, Tomotaka
    Shikishima, Akito
    IEICE COMMUNICATIONS EXPRESS, 2020, 9 (07): : 268 - 273