Convex domains and K-spectral sets

被引:0
|
作者
Catalin Badea
Michel Crouzeix
Bernard Delyon
机构
[1] UMR CNRS no. 8524,Département de Mathématiques
[2] Université de Lille I,Institut de Recherche Mathématique de Rennes
[3] UMR CNRS no. 6625,undefined
[4] Université de Rennes 1,undefined
来源
Mathematische Zeitschrift | 2006年 / 252卷
关键词
Hilbert Space; Space Operator; Convex Domain; Numerical Range; Open Convex;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω be an open convex domain of [inline-graphic not available: see fulltext]. We study constants K such that Ω is K-spectral or complete K-spectral for each continuous linear Hilbert space operator with numerical range included in Ω. Several approaches are discussed.
引用
收藏
页码:345 / 365
页数:20
相关论文
共 50 条
  • [1] Tests for complete K-spectral sets
    Dritschel, Michael A.
    Estevez, Daniel
    Yakubovich, Dmitry
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (03) : 984 - 1019
  • [2] Lemniscates and K-spectral sets
    Nevanlinna, Olavi
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (04) : 1728 - 1741
  • [3] INTERSECTIONS OF SEVERAL DISKS OF THE RIEMANN SPHERE AS K-SPECTRAL SETS
    Badea, Catalin
    Beckermann, Bernhard
    Crouzeix, Michel
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (01) : 37 - 54
  • [4] THE ANNULUS AS A K-SPECTRAL SET
    Crouzeix, Michel
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (06) : 2291 - 2303
  • [5] Comparison of K-spectral set bounds on norms of functions of a matrix or operator
    Greenbaum, Anne
    Wellen, Natalie
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 694 : 52 - 77
  • [6] Spectral gap for convex planar domains
    Harold Donnelly
    Mathematische Zeitschrift, 2011, 269 : 1 - 3
  • [7] Zero sets of functions in convex domains of finite type
    Alexandre, William
    MATHEMATISCHE ZEITSCHRIFT, 2017, 287 (1-2) : 85 - 115
  • [8] Spectral gap for stable process on convex planar double symmetric domains
    Dyda, Bartlomiej
    Kulczycki, Tadeusz
    POTENTIAL ANALYSIS, 2007, 27 (02) : 101 - 132
  • [9] On the existence of parabolic actions in convex domains of ℂk+1
    François Berteloot
    Ninh Van Thu
    Czechoslovak Mathematical Journal, 2015, 65 : 579 - 585
  • [10] Spectral Gap for Stable Process on Convex Planar Double Symmetric Domains
    Bartłomiej Dyda
    Tadeusz Kulczycki
    Potential Analysis, 2007, 27 : 101 - 132