Large deviations for sample paths of quadratic variations of Gaussian processes

被引:0
作者
Perrin O. [1 ]
Zani M. [2 ]
机构
[1] Université des Sciences Sociales, Toulouse
[2] Université Paris 12 Val-de-Marne, Créteil
关键词
Gaussian Process; Quadratic Variation; Singular Part; Large Deviation Principle; Standard Wiener Process;
D O I
10.1007/s10958-006-0375-4
中图分类号
学科分类号
摘要
We prove a functional large deviations principle for the family of random functions equation presented, where {Zt, t ε [0, 1]} is a real-valued centered Gaussian process. Bibliography: 19 titles. © Springer Science+Business Media, Inc. 2006.
引用
收藏
页码:6595 / 6602
页数:7
相关论文
共 19 条
  • [1] Baxter G., A strong limit theorem for Gaussian processes, Proc. Amer. Math. Soc., 7, pp. 522-527, (1956)
  • [2] Bhatia R., Matrix Analysis, (1996)
  • [3] Cattiaux P., Gamboa F., Large deviations and variational theorems for marginal problems, Bernoulli, 5, pp. 81-108, (1999)
  • [4] De Acosta A., Large deviations for vector-valued Lévy processes, Stochastic Process. Appl., 51, pp. 75-115, (1994)
  • [5] Dembo A., Zeitouni O., Large deviations for subsampling from individual sequences, Statist. Probab. Lett., 27, pp. 201-205, (1996)
  • [6] Dembo A., Zeitouni O., Large Deviations Techniques and Applications, 2nd Edition, (1998)
  • [7] Gamboa F., Gassiat E., Bayesian Methods and Maximum Entropy for Ill Posed Inverse Problems, (1995)
  • [8] Gamboa F., Gassiat E., Bayesian methods and maximum entropy for ill-posed problems, Ann. Statist., 25, pp. 328-350, (1997)
  • [9] Gamboa F., Rouault A., Zani M., A functional large deviations principle for quadratic forms of Gaussian stationary processes, Statist. Probab. Lett., 43, pp. 299-308, (1999)
  • [10] Gladyshev E.G., A new limit theorem for processes with Gaussian increments, Theory Probab. Appl., 6, pp. 52-61, (1961)