Numerical verifications for eigenvalues of second-order elliptic operators

被引:0
作者
M. T. Nakao
N. Yamamoto
K. Nagatou
机构
[1] Kyushu University,Graduate School of Mathematics
来源
Japan Journal of Industrial and Applied Mathematics | 1999年 / 16卷
关键词
eigenvalue problem; elliptic operators; error estimates; finite element solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a numerical technique to verify the exact eigenvalues and eigenfunctions of second-order elliptic operators in some neighborhood of their approximations. This technique is based on Nakao’s method [9] using the Newton-like operator and the error estimates for the C∘ finite element solution. We construct, in computer, a set containing solutions which satisfies the hypothesis of Schauder’s fixed point theorem for compact map on a certain Sobolev space. Moreover, we propose a method to verify the eigenvalue which has the smallest absolute value. A numerical example is presented.
引用
收藏
页码:307 / 320
页数:13
相关论文
共 15 条
[1]  
Knüppel O.(1994)PROFIL/BIAS — A fast interval library Computing 53 277-288
[2]  
Nakao M.T.(1988)A numerical approach to the proof of existence of solutions for elliptic problems Japan J. Appl. Math. 5 313-332
[3]  
Nakao M.T.(1990)A numerical approach to the proof of existence of solutions for elliptic problems II Japan J. Appl. Math. 7 477-488
[4]  
Nakao M.T.(1992)A numerical verification method for the existence of weak solutions for nonlinear boundary value problems J. Math. Anal. Appl. 164 489-507
[5]  
Nakao M.T.(1993)Solving nonlinear elliptic problem with result verification using an Computing, Suppl. 9 161-173
[6]  
Nakao M.T.(1998) type residual iteration J. Math. Anal. Appl. 217 246-262
[7]  
Yamamoto N.(1990)Numerical verification of solutions for nonlinear elliptic problems using an J.Appl.Math.Phys.(ZAMP) 41 205-226
[8]  
Plum M.(1991)∞ residual method J. Appl. Math. Phys. (ZAMP) 42 848-863
[9]  
Plum M.(1992)Eigenvalue inclusions for second-order ordinary differential operators by a numerical homotopy method J. Math. Anal. Appl. 165 36-61
[10]  
Plum M.(1995)Bounds for eigenvalues of second-order elliptic differential operators J. Comput. Appl. Math. 60 187-200